Abstract
Calabi-Yau compactifications have typically a large number of complex structure and/or Kähler moduli that have to be stabilised in phenomenologically-relevant vacua. The former can in principle be done by fluxes in type IIB solutions. However, the tadpole conjecture proposes that the number of stabilised moduli can at most grow linearly with the tadpole charge of the fluxes required for stabilisation. We scrutinise this conjecture in the 26 Gepner model: a non-geometric background mirror dual to a rigid Calabi-Yau manifold, in the deep interior of moduli space. By constructing an extensive set of supersymmetric Minkowski flux solutions, we spectacularly confirm the linear growth, while achieving a slightly higher ratio of stabilised moduli to flux charge than the conjectured upper bound. As a byproduct, we obtain for the first time a set of solutions within the tadpole bound where all complex structure moduli are massive. Since the 26 model has no Kähler moduli, these show that the massless Minkowski conjecture does not hold beyond supergravity.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
M. Cvetic, J. Halverson, G. Shiu and W. Taylor, Snowmass White Paper: String Theory and Particle Physics, arXiv:2204.01742 [INSPIRE].
A. Constantin, Y.-H. He and A. Lukas, Counting String Theory Standard Models, Phys. Lett. B 792 (2019) 258 [arXiv:1810.00444] [INSPIRE].
M. Cicoli, J.P. Conlon, A. Maharana, S. Parameswaran, F. Quevedo and I. Zavala, String cosmology: From the early universe to today, Phys. Rept. 1059 (2024) 1 [arXiv:2303.04819] [INSPIRE].
L. Anderson, X. Gao, J.Gray and S. Lee, The list of complete intersection calabi-yau three-folds, http://www-thphys.physics.ox.ac.uk/projects/CalabiYau/cicylist/index.html (2017).
K. Becker and M. Becker, Supersymmetry breaking, M theory and fluxes, JHEP 07 (2001) 038 [hep-th/0107044] [INSPIRE].
M. Graña and J. Polchinski, Supersymmetric three form flux perturbations on AdS(5), Phys. Rev. D 63 (2001) 026001 [hep-th/0009211] [INSPIRE].
K. Dasgupta, G. Rajesh and S. Sethi, M theory, orientifolds and G-flux, JHEP 08 (1999) 023 [hep-th/9908088] [INSPIRE].
S.B. Giddings, S. Kachru and J. Polchinski, Hierarchies from fluxes in string compactifications, Phys. Rev. D 66 (2002) 106006 [hep-th/0105097] [INSPIRE].
S. Gukov, C. Vafa and E. Witten, CFT’s from Calabi-Yau four folds, Nucl. Phys. B 584 (2000) 69 [hep-th/9906070] [INSPIRE].
J.M. Maldacena and C. Nunez, Supergravity description of field theories on curved manifolds and a no go theorem, Int. J. Mod. Phys. A 16 (2001) 822 [hep-th/0007018] [INSPIRE].
F. Denef and M.R. Douglas, Distributions of flux vacua, JHEP 05 (2004) 072 [hep-th/0404116] [INSPIRE].
T.W. Grimm and J. Monnee, Finiteness theorems and counting conjectures for the flux landscape, JHEP 08 (2024) 039 [arXiv:2311.09295] [INSPIRE].
I. Bena, J. Blåbäck, M. Graña and S. Lüst, The tadpole problem, JHEP 11 (2021) 223 [arXiv:2010.10519] [INSPIRE].
F. Carta, J. Moritz and A. Westphal, A landscape of orientifold vacua, JHEP 05 (2020) 107 [arXiv:2003.04902] [INSPIRE].
I. Bena, J. Blåbäck, M. Graña and S. Lüst, Algorithmically Solving the Tadpole Problem, Adv. Appl. Clifford Algebras 32 (2022) 7 [arXiv:2103.03250] [INSPIRE].
M. Demirtas, M. Kim, L. Mcallister and J. Moritz, Vacua with Small Flux Superpotential, Phys. Rev. Lett. 124 (2020) 211603 [arXiv:1912.10047] [INSPIRE].
T. Coudarchet, F. Marchesano, D. Prieto and M.A. Urkiola, Analytics of type IIB flux vacua and their mass spectra, JHEP 01 (2023) 152 [arXiv:2212.02533] [INSPIRE].
S. Lüst and M. Wiesner, The tadpole conjecture in the interior of moduli space, JHEP 12 (2023) 029 [arXiv:2211.05128] [INSPIRE].
A.P. Braun and R. Valandro, G4 flux, algebraic cycles and complex structure moduli stabilization, JHEP 01 (2021) 207 [arXiv:2009.11873] [INSPIRE].
A.P. Braun, H. Fortin, D.L. Garcia and R.V. Loyola, More on G-flux and general hodge cycles on the Fermat sextic, JHEP 06 (2024) 046 [arXiv:2401.00470] [INSPIRE].
I. Bena, C. Brodie and M. Graña, D7 moduli stabilization: the tadpole menace, JHEP 01 (2022) 138 [arXiv:2112.00013] [INSPIRE].
M. Graña, T.W. Grimm, D. van de Heisteeg, A. Herraez and E. Plauschinn, The tadpole conjecture in asymptotic limits, JHEP 08 (2022) 237 [arXiv:2204.05331] [INSPIRE].
C. Vafa and N.P. Warner, Catastrophes and the Classification of Conformal Theories, Phys. Lett. B 218 (1989) 51 [INSPIRE].
C. Vafa, String Vacua and Orbifoldized L-G Models, Mod. Phys. Lett. A 4 (1989) 1169 [INSPIRE].
K. Hori, A. Iqbal and C. Vafa, D-branes and mirror symmetry, hep-th/0005247 [INSPIRE].
K. Becker, M. Becker, C. Vafa and J. Walcher, Moduli Stabilization in Non-Geometric Backgrounds, Nucl. Phys. B 770 (2007) 1 [hep-th/0611001] [INSPIRE].
K. Becker, E. Gonzalo, J. Walcher and T. Wrase, Fluxes, vacua, and tadpoles meet Landau-Ginzburg and Fermat, JHEP 12 (2022) 083 [arXiv:2210.03706] [INSPIRE].
K. Becker, N. Brady and A. Sengupta, On fluxes in the 19 Landau-Ginzburg model, JHEP 11 (2023) 152 [arXiv:2310.00770] [INSPIRE].
K. Becker, M. Rajaguru, A. Sengupta, J. Walcher and T. Wrase, Stabilizing massless fields with fluxes in Landau-Ginzburg models, JHEP 08 (2024) 069 [arXiv:2406.03435] [INSPIRE].
D. Andriot, L. Horer and P. Marconnet, Exploring the landscape of (anti-) de Sitter and Minkowski solutions: group manifolds, stability and scale separation, JHEP 08 (2022) 109 [Erratum ibid. 09 (2022) 184] [arXiv:2204.05327] [INSPIRE].
M. Rajaguru, A. Sengupta and T. Wrase, Fully stabilized Minkowski vacua in the 26 Landau-Ginzburg model, arXiv:2407.16756 [INSPIRE].
I. Brunner and K. Hori, Orientifolds and mirror symmetry, JHEP 11 (2004) 005 [hep-th/0303135] [INSPIRE].
I. Brunner, K. Hori, K. Hosomichi and J. Walcher, Orientifolds of Gepner models, JHEP 02 (2007) 001 [hep-th/0401137] [INSPIRE].
K. Becker, N. Brady, M. Graña, M. Morros, A. Sengupta and Q. You, Landau-Ginzburg 26: Fluxes with stable moduli, GitHub repository, https://github.com/nait400/LG_2-6_fluxes-with-stable-moduli (2024).
A.P. Braun, B. Fraiman, M. Graña, S. Lüst and H. Parra de Freitas, Tadpoles and gauge symmetries, JHEP 08 (2023) 134 [arXiv:2304.06751] [INSPIRE].
Acknowledgments
We would like to thank Iosif Bena, Antoine Bourget, Andreas Braun, Severin Lust, Ilarion Melnikov, Jakob Moritz, Hector Parra De Freitas, Muthusamy Rajaguru, Johannes Walcher, Alexander Whestphal and Timm Wrase for interesting discussions and useful comments. The work of KB, NB, AS and QY is supported in part by the NSF grant PHY-2112859. MG is partly supported by the ERC Consolidator Grant 772408-Stringlandscape.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2407.16758
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Becker, K., Brady, N., Graña, M. et al. Tadpole conjecture in non-geometric backgrounds. J. High Energ. Phys. 2024, 21 (2024). https://doi.org/10.1007/JHEP10(2024)021
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP10(2024)021