Skip to main content
Log in

Generating Triples of Conjugate Involutions for Finite Simple Groups

  • Published:
Algebra and Logic Aims and scope

It is proved that among finite simple non-Abelian groups only the groups U3(3) and A8 are not generated by three conjugate involutions. This result is obtained modulo a known conjecture on the description of finite simple groups generated by two elements of orders 2 and 3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (China (P.R.))

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Malle, J. Saxl, and T. Weigel, “Generation of classical groups,” Geom. Dedicata, 49, No. 1, 85-116 (1994).

    Article  MathSciNet  Google Scholar 

  2. Unsolved Problems in Group Theory, The Kourovka Notebook, No. 20, E. I. Khukhro and V. D. Mazurov (Eds.), Sobolev Institute of Mathematics, Novosibirsk (2022); https://alglog.org/20tkt.pdf

  3. L. Di Martino and M. C. Tamburini, “2-Generation of finite simple groups and some related topics,” in NATO ASI Ser., Ser. C, 333, Kluwer, Dordrecht (1991), pp. 195-233.

  4. F. Lübeck and G. Malle, “(2, 3)-generation of exceptional groups,” J. London Math. Soc., II. Ser., 59, No. 1, 109-122 (1999).

  5. M. W. Liebeck and A. Shalev, “Classical groups, probabilistic methods, and the (2, 3)- generation problem,” Ann. Math. (2), 144, No. 1, 77-125 (1996).

  6. M. A. Vsemirnov, “On (2,3)-generated groups,” The Int. Conf. Group Theory in Honor of the 70th Birthday of Prof. Victor D. Mazurov (July 16-20, 2013, Novosibirsk); http://math.nsc.ru/conference/groups2013/slides/MaximVsemirnov_slides.pdf

  7. M. A. Pellegrini, M. Prandelli, and M. C. Tamburini Bellani, “The (2, 3)-generation of the special unitary groups of dimension 6,” J. Alg. Appl., 15, No. 9 (2016), Article ID 1650171.

  8. J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson, Atlas of Finite Groups, Clarendon Press, Oxford (1985).

    Google Scholar 

  9. G. A. Miller, “Possible orders of two generators of the alternating and of the symmetric groups,” Trans. Am. Math. Soc., 30, 24-32 (1928).

    MathSciNet  Google Scholar 

  10. A. J. Woldar, “On Hurwitz generation and genus actions of sporadic groups,” Ill. J. Math., 33, No. 3, 416-437 (1989).

    MathSciNet  Google Scholar 

  11. M. A. Pellegrini, “The (2, 3)-generation of the special linear groups over finite fields,” Bull. Aust. Math. Soc., 95, No. 1, 48-53 (2017).

    Article  MathSciNet  Google Scholar 

  12. M. A. Pellegrini and M. C. Tamburini Bellani, “The (2, 3)-generation of the finite unitary groups,” J. Alg., 549, 319-345 (2020).

  13. M. A. Pellegrini and M. C. Tamburini Bellani, “On the (2, 3)-generation of the finite symplectic groups,” J. Alg., 598, 156-193 (2022).

  14. A. Wagner, “The minimal number of involutions generating some finite three dimensional groups,” Boll. Unione Mat. Ital., V. Ser., A 15, No. 5, 431-439 (1978).

  15. J. M. Ward, “Generation of simple groups by conjugate involutions,” Queen Mary College, Univ. London, PhD thesis, 2009; https://webspace.maths.qmul.ac.uk/r.a.wilson/JWardPhD.pdf

  16. Ya. N. Nuzhin, “Generating sets of involutions of finite simple groups,” Algebra and Logic, 58, No. 3, 288-293 (2019).

    Article  MathSciNet  Google Scholar 

  17. Ya. N. Nuzhin, “Generating sets of elements of Chevalley groups over a finite field,” Algebra and Logic, 28, No. 6, 438-449 (1989).

    Article  MathSciNet  Google Scholar 

  18. Ya. N. Nuzhin, “Generating triples of involutions of groups of Lie type of rank 2 over finite fields,” Algebra and Logic, 58, No. 1, 59-76 (2019).

    Article  MathSciNet  Google Scholar 

  19. R. Steinberg, “Generators for simple groups,” Can. J. Math., 14, 277-283 (1962).

    Article  MathSciNet  Google Scholar 

  20. L. L. Scott, “Matrices and cohomology,” Ann. Math. (2), 105, 473-492 (1977).

    Article  MathSciNet  Google Scholar 

  21. Ya. N. Nuzhin, “Generating triples of involutions for Chevalley groups over a finite field of characteristic 2,” Algebra and Logic, 29, No. 2, 134-143 (1990).

    Article  MathSciNet  Google Scholar 

  22. Ya. N. Nuzhin, “Groups contained between groups of Lie type over various fields,” Algebra and Logic, 22, No. 5, 378-389 (1983).

    Article  MathSciNet  Google Scholar 

  23. P. Kleidman and M. Liebeck, The Subgroup Structure of the Finite Classical Groups, London Math. Soc. Lect. Note Ser., 129, Cambridge Univ. Press, Cambridge (1990).

  24. L. J. Rylands and D. E. Taylor, “Matrix generators for the orthogonal groups,” J. Symb. Comput., 25, No. 3, 351-360 (1998).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Vsemirnov.

Additional information

Translated from Algebra i Logika, Vol. 62, No. 5, pp. 569-592, September-October, 2023. Russian DOI:https://doi.org/10.33048/alglog.2023.62.501.

M. A. Vsemirnov and Ya. N. Nuzhin are supported by the Russian Science Foundation, project No. 22-21-00733.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vsemirnov, M.A., Nuzhin, Y.N. Generating Triples of Conjugate Involutions for Finite Simple Groups. Algebra Logic 62, 379–397 (2023). https://doi.org/10.1007/s10469-024-09753-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10469-024-09753-2

Keywords

Navigation