Fluorination of heterocyclic compounds accompanied by molecular rearrangements is an area of synthesis experiencing rapid advances. One of the characteristics of electrophilic and oxidative fluorination is the involvement of carbocations, radicals, and radical ions which can undergo rearrangements. Such rearrangements expand the range of fluorinated products, which are sometimes difficult to access by direct fluorination of heterocyclic compounds. The purpose of this review is to systematize and analyze the literature data published over the past decade on fluorination of heterocyclic compounds accompanied by molecular rearrangements. Particular attention is paid to the analysis of reaction mechanisms and the problem of selectivity.
Similar content being viewed by others
References
Lowe, P. T.; O'Hagan, D. Chem. Soc. Rev. 2023, 52, 248.
Benedetto Tiz, D.; Bagnoli, L.; Rosati, O.; Marini, F.; Sancineto, L.; Santi, C. Molecules 2022, 27, 1643.
Mei, H.; Han, J.; White, S.; Graham, D. J.; Izawa, K.; Sato, T.; Fustero, S.; Meanwell, N. A.; Soloshonok, V. A. Chem.–Eur. J. 2020, 26, 11349.
Dhiman, P.; Arora, N.; Thanikachalam, P. V.; Monga, V. Bioorg. Chem. 2019, 92, 103291.
Zhou, Y.; Wang, J.; Gu, Z.; Wang, S.; Zhu, W.; Aceña, J. L.; Soloshonok, V. F.; Izawa, K.; Liu, H. Chem. Rev. 2016, 116, 422.
Wang, J.; Sánchez-Roselló, M.; Aceña, J. L.; del Pozo, C.; Sorochinsky, A. E.; Fustero, S.; Soloshonok, V. A.; Liu, H. Chem. Rev. 2014, 114, 2432.
Zaikin, P. A.; Borodkin, G. I. In Late-Stage Fluorination of Bioactive Molecules and Biologically-Relevant Substrates; Postigo, A., Ed.; Elsevier: Amsterdam, 2019, p. 105.
Mykhailiuk, P. K. Chem. Rev. 2021, 121, 1670.
Jeschke, P. Eur. J. Org. Chem. 2022, e202101513.
Jeanmart, S.; Edmunds, A. J. F.; Lamberth, C.; Pouliot, M. Bioorg. Med. Chem. 2016, 24, 317.
Li, F.; Wang, M.; Liu, S.; Zhao, Q. Chem. Sci. 2022, 13, 2184.
Bremer, M.; Kirsch, P.; Klasen-Memmer, M.; Tarumi, K. Angew. Chem., Int. Ed. 2013, 52, 8880.
Squeo, B. M.; Gregoriou, V. G.; Avgeropoulos, A.; Baysec, S.; Allardd, S.; Scherf, U.; Chochos, C. L. Prog. Polym. Sci. 2017, 71, 26.
Borodkin, G. I.; Shubin, V. G. Russ. J. Org. Chem. 2021, 57, 1369.
Borodkin, G. I.; Shubin, V. G. Chem. Heterocycl. Compd. 2022, 58, 84.
Ramsden, C. A. ARKIVOC 2014, (i), 109.
Martínez, J.; Cortés, J. F.; Miranda, R. Processes 2022, 10, 1274.
Erythropel, H. C.; Zimmerman, J. B.; de Winter, T. M.; Petitjean, L.; Melnikov, F.; Lam, C. H.; Lounsbury, A. W.; Mellor, K. E.; Janković, N. Z.; Tu, Q.; Pincus, L. N.; Falinski, M. M.; Shi, W.; Coish, P.; Plata, D. L.; Anastas, P. T. Green Chem. 2018, 20, 1929.
Borodkin, G. I.; Shubin, V. G. Russ. Chem. Rev. 2010, 79, 259.
Fluorination; Hu, J.; Umemoto, T., Eds.; Springer Nature: Singapore, 2020.
Borodkin, G. I. Russ. Chem. Rev. 2023, 92, RCR5091.
Liang, T.; Neumann, C. N.; Ritter, T. Angew. Chem., Int. Ed. 2013, 52, 8214.
Rozatian, N.; Hodgson, D. R. W. Chem. Commun. 2021, 57, 683.
Sakthivel, K.; Subhiksha, J.; Raju, A.; Kumar, R.; Dohi, T.; Singha, F. V. ARKIVOC 2022, (vii), 138.
Haufe, G. Chem. Rec. 2023, 23, e202300140.
Bykova, T.; Al-Maharik, N.; Slawin, A. M. Z.; O'Hagan, D. J. Fluorine Chem. 2015, 179, 188.
Kitamura, T.; Yoshida, K.; Mizuno, S.; Miyake, A.; Oyamada, J. J. Org. Chem. 2018, 83, 14853.
Sharma, H. A.; Mennie, K. M.; Kwan, E. E.; Jacobsen, E. N. J. Am. Chem. Soc. 2020, 142, 16090.
Hoogesteger, R. H.; Murdoch, N.; Cordes, D. B.; Johnston, C. P. Angew. Chem., Int. Ed. 2023, 62, e202308048
Wang, Q.; Biosca, M.; Himo, F.; Szabó, K. J. Angew. Chem., Int. Ed. 2021, 60, 26327.
Scheidt, F.; Neufeld, J.; Schäfer, M.; Thiehoff, C.; Gilmour, R. Org. Lett. 2018, 20, 8073.
Lin, P.-P.; Huang, L.-L.; Feng, S.-X.; Yang, S.; Wang, H.; Huang, Z.-S.; Li, Q. Org. Lett. 2021, 23, 3088.
Brunner, C.; Andries-Ulmer, A.; Kiefl, G. M.; Gulder, T. Eur. J. Org. Chem. 2018, 2615.
Ulmer, A.; Brunner, C.; Arnold, A. M.; Pöthig, A.; Gulder, T. Chem.–Eur. J. 2016, 22, 3660.
Chai, H.; Zhen, X.; Wang, X.; Qi, L.; Qin, Y.; Xue, J.; Xu, Z.; Zhang, H.; Zhu, W. ACS Omega 2022, 7, 19988.
Neufeld, J.; Stünkel, T.; Mück-Lichtenfeld, C.; Daniliuc, C. G.; Gilmour, R. Angew. Chem., Int. Ed. 2021, 60, 13647.
Ren, J.; Du, F.-H.; Jia, M.-C.; Hu, Z.-N.; Chen, Z.; Zhang, C. Angew. Chem., Int. Ed. 2021, 60, 24171.
Komatsuda, M.; Suto, A.; Kondo, H.; Takada, H.; Kato, K.; Saito, B.; Yamaguchi, J. Chem. Sci. 2022, 13, 665.
Lin, T.-S.; Tsai, W.-T.; Liang, P.-H. Tetrahedron 2016, 72, 5571.
Garia, A.; Kumar, S.; Jain, N. Asian J. Org. Chem. 2022, 11, e202200164.
Xu, Z.-F.; Dai, H.; Shan, L.; Li, C.-Y. Org. Lett. 2018, 20, 1054.
Levin, M. A.; Ovian, J. M.; Read, J. A.; Sigman, M. S.; Jacobsen, E. N. J. Am. Chem. Soc. 2020, 142, 14831.
Li, C.; Liao, Y.; Tan, X.; Liu, X.; Liu, P.; Lv, W.-X.; Wang, H. Sci. China: Chem. 2021, 64, 999.
Ning, Y.; Sivaguru, P.; Zanoni, G.; Anderson, E. A.; Bi, X. Chem 2020, 6, 486.
Pang, J. H.; Chiba, S. Sci. China: Chem. 2020, 63, 1019.
Li, H.; Reddy, B. R. P.; Bi, X. Org. Lett. 2019, 21, 9358.
Inoue, T.; Nakabo, S.; Hara, S. J. Fluorine Chem. 2016, 184, 22.
Romanov-Michailidis, F.; Guénée, L.; Alexakis, A. Angew. Chem., Int. Ed. 2013, 52, 9266.
Romanov-Michailidis, F.; Romanova-Michaelides, M.; Pupier, M.; Alexakis, A. Chem.–Eur. J. 2015, 21, 5561.
Zhao, P.; Wang, W.; Gulder, T. Org. Lett. 2023, 25, 6560.
Chen, Z.-M.; Yang, B.-M.; Chen, Z.-H.; Zhang, Q.-W.; Wang, M.; Tu, Y.-Q. Chem.–Eur. J. 2012, 18, 12950.
Liu, A.; Ni, C.; Xie, Q.; Hu, J. Angew. Chem., Int. Ed. 2022, 61, e202115467.
Das, B. K.; Tokunaga, E.; Harada, K.; Sumii, Y.; Shibata, N. Org. Chem. Front. 2017, 4, 1726.
Liao, L.; An, R.; Li, H.; Xu, Y.; Wu, J.-J.; Zhao, X. Angew. Chem., Int. Ed. 2020, 59, 11010.
Alcaide, B.; Almendros, P.; Cembellıґn, S.; Martínez del Campo, T.; Muñoz, A. Chem. Commun. 2016, 52, 6813.
Lu, Y.; Kasahara, A.; Hyodo, T.; Ohara, K.; Yamaguchi, K.; Otani, Y.; Ohwada, T. Org. Lett. 2023, 25, 3482.
Thornbury, R. T.; Saini, V.; Fernandes, T. A.; Santiago, C. B.; Talbot, E. P. A.; Sigman, M. S.; McKenna, J. M.; Toste, F. D. Chem. Sci. 2017, 8, 2890.
Talbot, E. P. A.; Fernandes, T. A.; McKenna, J. M.; Toste, F. D. J. Am. Chem. Soc. 2014, 136, 4101.
Cao, J.; Wu, H.; Wang, Q.; Zhu, J. Nature Chem. 2021, 13, 671.
Gong, J.; Wang, Q.; Zhu, J. Angew. Chem., Int. Ed. 2022, 61, e202211470.
Yang, G.; Wu, H.; Gallarati, S.; Corminboeuf, C.; Wang, Q.; Zhu, J. J. Am. Chem. Soc. 2022, 144, 14047.
Mishra, K.; Singh, J. B.; Gupta, T.; Singh, R. M. Org. Chem. Front. 2017, 4, 1794.
Bui, T. T.; Hong, W. P.; Kim, H.-K. J. Fluorine Chem. 2021, 247, 109794.
Morcillo, S. P. Angew. Chem., Int. Ed. 2019, 58, 14044.
Borodkin, G. I.; Shubin, V. G. Russ. Chem. Rev. 2019, 88, 160.
Dauncey, E. M.; Morcillo, S. P.; Douglas, J. J.; Sheikh, N. S.; Leonori, D. Angew. Chem., Int. Ed. 2018, 57, 744.
Pitts, C. R.; Bloom, M. S.; Bume, D. D.; Zhang, Q. A.; Lectka, T. Chem. Sci. 2015, 6, 5225.
Morcillo, S. P.; Dauncey, E. M.; Kim, J. H.; Douglas, J. J.; Sheikh, N. S.; Leonori, D. Angew. Chem., Int. Ed. 2018, 57, 12945.
Wang, M.-M.; Waser, J. Angew. Chem., Int. Ed. 2020, 59, 16420.
Hayashi, H.; Maeda, S.; Mita, T. Chem. Sci. 2023, 14, 11601.
Author information
Authors and Affiliations
Corresponding author
Additional information
Translated from Khimiya Geterotsiklicheskikh Soedinenii, 2024, 60(7/8), 323–335
Rights and permissions
About this article
Cite this article
Borodkin, G.I. Fluorination of heterocyclic compounds accompanied by molecular rearrangements. Chem Heterocycl Comp (2024). https://doi.org/10.1007/s10593-024-03340-0
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10593-024-03340-0