Skip to main content
Log in

Materials Based on Bioglass 45S5, Doped with Heavy Elements, for Use as Radiosensitizers

  • Published:
Glass and Ceramics Aims and scope Submit manuscript

Glass and glass ceramics containing 40 wt.% of heavy metal oxides (Bi, Ta, and W) were obtained for use in medicine as radiosensitizers. The properties of the composites were studied in vitro, including the generation of secondary radiation, chemical solubility, and the variations in the pH of the medium during resorption. The results demonstrated that the secondary radiation indicators and pH value of the medium decreased in the order: W > Ta > Bi. Solubility indices decreased in the order: W > Bi > Ta. Despite the highest generation of secondary ionizing radiation, W-containing ceramics based on Bioglass 45S5 are unsuitable for in vivo use due to their rapid dissolution and high alkalization of the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (China (P.R.))

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. W. Fendler, B. Tomasik, K. Atkins, et al., “The clinician’s guide to radiotherapy complications,” Pol. Arch. Intern. Med., 132(1), 16190 (2022). https://doi.org/10.3390/met6100231

    Article  PubMed  Google Scholar 

  2. A. C. Moreno, S. J. Frank, A. S. Garden, et al., “Intensity modulated proton therapy (IMPT) — The future of IMRT for head and neck cancer,” Oral Oncol., 88, 66 – 74 (2019).

    Article  PubMed  Google Scholar 

  3. S. H. Jiang, L. P. Hu, X.Wang, et al., “Neurotransmitters: emerging targets in cancer,” Oncogene, 39(3), 503 – 515 (2020).

  4. W. Sun, K. Chen, Y. Li, et al., “Optimization of collimator angles in dual-arc volumetric modulated arc therapy planning for whole-brain radiotherapy with hippocampus and inner ear sparing,” Sci. Rep., 11, 19035 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. J. Crezee, A. L. Oei, N. A. P. Franken, et al., “Response: Commentary: The impact of the time interval between radiation and hyperthermia on clinical outcome in patients with locally advanced cervical cancer,” Front. Oncol., 10, 528 (2020).

    Article  PubMed Central  PubMed  Google Scholar 

  6. S. M. Chen, Y. Y. Li, C. H. Tu, et al., “Blockade of inhibitors of apoptosis proteins in combination with conventional chemotherapy leads to synergistic antitumor activity in medulloblastoma and cancer stem-like cells,” PLoS One, 11(8), 0161299 (2016).

    Article  Google Scholar 

  7. M. Tisi, V. Mares, J. Schreiber, et al., “Geant4 Monte Carlo simulation study of the secondary radiation fields at the laser-driven ion source LION,” Sci. Rep., 11(1), 24418 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Y. S. Horowitz, A. Horowitz, L. Oster, et al., “Investigation of the ionisation density dependence of the glow curve characteristics of LIF:MG, TI (TLD-100),” Radiat. Prot. Dosimetry, 131(4), 406 – 413 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. M. A. Medkov, D. N. Grishchenko, V. G. Kuryavy, and A. B. Slobodyuk, “Tungsten-containing radiopaque bioactive glasses: preparation and properties,” Steklo Keram., 91(8), 40 – 45 (2018). [M. A. Medkov, D. N. Grishchenko, V. G. Kuryavy, and A. B. Slobodyuk, “Tungsten-containing radiopaque bioactive glasses: preparation and properties,” Glass Ceram., 75(7 – 8), 322 – 326 (2018).]

  10. M. A. Medkov, D. N. Grishchenko, E. E. Dmitrieva, and V. G. Kudryavyi, “Obtaining bioactive glasses by the pyrolysis of organic solutions,” Theor. Found. Chem. Eng., 54(4), 1005 – 1009 (2020).

    Article  CAS  Google Scholar 

  11. M. V. Velasco, M. T. Souza, M. C. Crovace, et al., “Bioactive magnetic glass-ceramics for cancer treatment,” Biomed. Glasses, 5(1), 148 – 177 (2019).

    Article  Google Scholar 

  12. R. D. Aspasio, R. Borges, and J. Marchi, “Biocompatible glasses for cancer treatment,” Biocompatible Glasses. Adv. Struct. Mater., 53, 249 – 265 (2016).

    Article  Google Scholar 

  13. H. Bourien, X. Palard, Y. Rolland, et al., “Yttrium-90 glass microspheres radioembolization (RE) for biliary tract cancer: a large single-center experience,” Eur. J. Nucl. Med. Mol. Imaging, 46, 669 – 676 (2019).

    Article  CAS  PubMed  Google Scholar 

  14. J. Zhang, D. Wang, and W. Huang, “Preparation and characterization of Fe2O3–SiO2–Y2O3–Al2O3 ferromagnetic glass ceramics microspheres for hyperthermia application,” J. Chin. Ceram. Soc., 39(6), 923 (2011).

    CAS  Google Scholar 

  15. L. Wang, N. J. Long, L. Li, et al., “Multi-functional bismuth-doped bioglasses: combining bioactivity and photothermal response for bone tumor treatment and tissue repair,” Light Sci. Appl., 7, 1 (2018).

    Article  PubMed Central  PubMed  Google Scholar 

  16. D. N. Grishchenko, A. B. Slobodyuk, V. G. Kuryavy, and M. A. Medkov, “Tantalum-containing bioactive glass ceramics: Mechanism for suppressing the biological activity of 45S5 glass doped with Ta2O5,” Zh. Neorg. Khim., 65(10), 1408 – 1415 (2020).

    Google Scholar 

  17. S. S. Prasad, T. Adarsh, and A. Anand, “In vitro bioactivity and antibacterial properties of bismuth oxide modified bioactive glasses,” J. Mater. Res., 33(2), 178 – 190 (2018).

    Article  Google Scholar 

  18. K. S. Lukyanenko, V. I. Apanasevich, A. V. Lagureva, et al., “Possibility of generating secondary ionizing radiation by tantalum oxide nanoparticles during radiation therapy of malignant tumors,” Tikhookeansk. Med. Zh., No. 4, 38 – 40 (2016).

  19. O. S. Plotnikova, V. I. Apanasevich, M. A. Medkov, et al., “Patent RF 2794457,” Byull. Izobr. Polezn. Modeli, No. 11 (2023), appl. 30.12.2022, publ. 18.04.2023.

  20. Z. A. Nezhad, G. Geraily, F. Hataminia, et al., “Investigation of the dose enhancement effect of spherical bismuth oxide nanoparticles in external beam radiotherapy,” Nanomed. Res. J., 5(1), 55 – 62 (2020).

    CAS  Google Scholar 

  21. C. Stewart, K. Konstantinov, S. McKinnon, et al., “First proof of bismuth oxide nanoparticles as efficient radiosensitisers on highly radioresistant cancer cells,” Phys. Med., 32(11), 1444 – 1452 (2016).

    Article  PubMed  Google Scholar 

  22. R.Wang, H. Li, and H. Sun, “Bismuth: environmental pollution and health effects,” in: Encyclopedia of Environmental Health (Second Edition) (2019), pp. 415 – 423.

  23. L. S. Rieznichenko, T. G. Gruzina, S. M. Dybkova, et al., “Investigation of bismuth nanoparticles antimicrobial activity against high pathogen microorganisms,” Am. J. Bioterror. Biosecur. Biodefens., 2(1), 1004 (2015).

    Google Scholar 

  24. A. M. Alhalawani, C. Mehrvara,W. Stonec, et al., “A novel tantalum-containing bioglass. Part II. Development of a bioadhesive for sternal fixation and repair,” Mater. Sci. Eng. C, 71, 401 – 411 (2017).

    Article  CAS  Google Scholar 

Download references

The work was carried out in accordance with the state task from the FSBSI Institute of Chemistry of the Far Eastern Branch of the Russian Academy of Sciences, topic FWFN-2022-0001, and the Strategic Academic Leadership Program “Priority 2030.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. N. Grishchenko.

Additional information

Translated from Steklo i Keramika, No. 5, pp. 3 – 10, May, 2024

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grishchenko, D.N., Plotnikova, O.S., Kuryavyi, V.G. et al. Materials Based on Bioglass 45S5, Doped with Heavy Elements, for Use as Radiosensitizers. Glass Ceram 81, 181–185 (2024). https://doi.org/10.1007/s10717-024-00680-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10717-024-00680-3

Keywords

Navigation