The study reviews the current progress in the sol-gel method for the synthesis of ferroelectric powders, thin films, and rods in the lead zirconate-titanate system. In addition, it examines methods for obtaining controlled particle morphology, primarily rod-like. The synthetic approaches in the sol-gel process and heat treatment conditions for obtaining lead zirconate-titanate ceramics of pre-defined morphology are the primary focus of the present review.
Similar content being viewed by others
References
A. G. Kanareikin, Ferroelectric Properties of Nanostructured Systems Based on Lead Zirconate Titanate, Author’s Abstract of Candidate’s Thesis [in Russian], Russian State Pedagogical University named after A. I. Herzen, St. Petersburg (2018).
S. I. Torgashin, I. N. Cheburakhin, V. G. Andreev, and V. V. Kikot, “Prospects for creating piezoactuators for measurement, control, and management systems of rocket and space technology and ground-based space infrastructure,” Raketno-Kosm. Priborostr. Inf. Sist. [in Russian], 6(3), 93 – 100 (2019).
A. G. Kanareikin, E. Yu. Kaptelov, S. V. Senkevich, et al., “Influence of high-temperature annealing on the orientation of the unipolarity vector in thin films of lead zirconate titanate,” Fiz. Tverd. Tela, 58(11), 2242 – 2247 (2016).
I. Aulika, A. Dejneka, S. Mergan, et al., “Compositional and optical gradient in films of PbZrxTi1–xO3 (PZT) family,” in: Ferroelectrics – Phys. Effects (2011), pp. 579 – 602.
D. A. Kovalenko, V. V. Petrov, and V. G. Klindukhov, “Investigation of the influence of technological parameters on the formation of thin films of lead zirconate titanate on their structural and electrophysical properties,” Izv. YUFO, Tekhn. Nauki, No. 9(158), 124 – 132 (2018).
V. V. Osipov, E. A. Tukhvatullina, E. Yu. Kaptelov, et al., “Investigation of the relationship between composition and dielectric properties in thin layers of lead zirconate titanate,” in: Mater. Mezhdunar. Nauch.-Tekhn. Konf., INTERMATIC-2018, Part 2 [in Russian], RTU MIREA, Moscow (2018), pp. 224 – 227.
M. V. Kamenshchikov, A. V. Solnyshkin, A. A. Bogomolov, and I. P. Pronin, “Electrical conduction mechanisms in PZT thin films deposited by RF magnetron sputtering method,” Ferroelectrics, 442(1), 101 – 106 (2013).
M. Prabu, I. B. Banu, G. V. Vijayaraghavan, et al., “Pulsed laser deposition and ferroelectric characterization of nanostructured perovskite lead zirconate titanate (52/48) thin films,” J. Nanosci. Nanotechnol., No. 13(3), 1938 – 1942 (2013).
Y. Ma, J. Song, X. Wang, et al., “Synthesis, microstructure and properties of magnetron sputtered lead zirconate titanate (PZT) thin film coatings,” Coatings, 11(8), Art. 944. https://doi.org/10.3390/coatings11080944 (2021).
M. D. Nguyen, E. P. Houwman, M. Dekkers, et al., “Strongly enhanced piezoelectric response in lead zirconate titanate films with vertically aligned columnar grains,” ACS Appl. Mater. Interfaces, No. 9, 9849 – 9861 (2017).
M. Mtebwa, “Optimization of pulsed laser deposition parameters for single-crystalline (011) oriented tetragonal PZT thin films,” Tanzan. J. Eng. Technol., No. 41(4), 183 – 191 (2022).
V. V. Klimov, I. K. Skirdina, and N. I. Selikova, et al., “Electrophysical properties of thick films based on lead zirconate titanate,” Neorg. Mater., 44(5), 608 – 610 (2008).
M. G. Kang, S.-Y. Lee, D. Maurya, et al., “Wafer-scale single-crystalline ferroelectric perovskite nanorod arrays,” Adv. Funct. Mater., 1701542 (2017).
P. Löbmann, U. Lange,W. Glaubitt, et al., “Powders, fibers, thin films and aerogels: sol-gel-derived piezoelectric materials,” Key Eng. Mater., No. 224 – 226, 613 – 618 (2002).
Y. Cui, H. Yu, Z. Abbas, et al., “PZT composite film preparation and characterization using a method of sol-gel and electrohydrodynamic jet printing,” Micromachines, 14(5), Art. 918 (2023).
A. Shoghi, H. Abdizadeh, A. Shakeri, and M. R. Golobostanfard, “Sol-gel synthesis of PZT thin films on FTO glass substrates for electro-optic devices,” J. Sol-Gel Sci. Technol., No. 93, 623 – 632 (2020).
S. Takenaka and H. Kozuka, “Sol-gel preparation of single-layer, 0.75 μm thick lead zirconate titanate films from lead nitrate-titanium and zirconium alkoxide solutions containing polyvinylpyrrolidone,” Appl. Phys. Lett., 79(21), 3485 – 3487 (2001).
M. Xiao, W. Zhang, Z. Zhang, et al., “Nonlinear current–voltage behavior in PZT thin films,” Appl. Phys. A, No. 123(5), Art. 343 (2017).
P. Shi, Y. Yang, H. Li, et al., “Study on the properties of Pb(Zr, Ti)O3 thin films grown alternately by pulsed laser deposition and sol-gel method,” Phys. Lett. A, 384(11), 126232 (2020).
K. A. Vorotilov and A. S. Sigov, “Sol-gel derived ferroelectric thin films: avenues for control of microstructural and electric properties,” J. Sol-Gel Sci. Technol., No. 16, 109 – 118 (1999).
M. F. Rahman and L. S. Miglioli, “Synthesis of ferroelectric lead zirconate titanate Pb[Zr0.52Ti0.48]O3 (PZT) thin film on gold substrate by sol-gel method,” in: 2nd Int. Conf. Electr. Eng. Inf. Commun. Technol. (ICEEICT) (2015).
R. W. Schwartz, T. J. Boyle, S. J. Lockwood, et al., “Sol-gel processing of PZT thin films: A review of the state-of-the-art and process optimization strategies,” Integr. Ferroelectr., 7, 259 – 277 (1995).
D. S. Seregin, K. A. Vorotilov, A. S. Sigov, et al., “Formation and properties of porous lead zirconate titanate films,” Fiz. Tverd. Tela [in Russian], 57(3), 487 – 490 (2015).
Y. Y. Xu, Y.Wang, A. Y. Liu, et al., “Ferroelectric dielectric and optical properties of layered PbZrxTi1–xO3 films derived from precursor solutions containing polyvinylpyrrolidone polymer additive,” Ferroelectrics, No. 571(1), 120 – 128 (2021).
K. A. Vorotilov, V. M. Mukhortov, and A. S. Sigov, Integrated Ferroelectric Devices [in Russian], Moscow, Energoatomizdat (2011).
S. Yu, K. Yao, S. Shannigrahi, and F. Tay, “Effect of poly(ethylene glycol) additive molecular weight on the microstructure and properties of sol-gel-derived lead zirconate titanate thin films,” J. Mater. Res., No. 18, 737 – 741 (2003).
E. N. Zubkova, D. A. Abdullaev, D. S. Seregin, et al., “Features of the microstructure of porous lead zirconate titanate films,” in: Mater. Mezhdunar. Nauch.-Tekhn. Konf., INTERMATIC-2013, Moscow, MIREA, December 2 – 6 [in Russian], Moscow (2013), pp. 82 – 86.
K. Yamashita, T. Nishiumi, K. Arai, et al., “Intrinsic stress control of sol-gel derived PZT films for buckled diaphragm structures of highly sensitive ultrasonic microsensors,” Procedia Eng., 120, 1205 – 1208 (2015).
M. Moriyama, K. Totsu, and S. Tanaka, “Sol-gel deposition and characterization of lead zirconate titanate thin film using different commercial sols,” Sens. Mater., 31(8), 2497 – 2509 (2019).
V. N. Vertoprakhov, L. D. Nikulina, and I. K. Igumenov, “Synthesis of oxide ferroelectric thin films from organometallic compounds and their properties,” Usp. Khimii, No. 74(8), 797 – 819 (2005).
R. Bel-Hadj-Tahar, “Morphological and electrical investigations of lead zirconium titanate thin films processed at low temperature by a novel sol-gel system,” J. Alloys Compd., No. 729, 607 – 616 (2017).
K. Yamashita, S. Nakajima, J. Shiomi, and M. Noda, “Sensitivity of piezoelectric ultrasonic microsensors with sol-gel derived PZT films prepared through various pyrolysis temperatures,” Proceeding, No. 1, 394 (2017).
N. M. Kotova, K. A. Vorotilov, D. S. Seregin, et al., “Role of precursors in the formation of lead zirconate titanate thin films,” Neorg. Mater., 50(6), 661 – 666 (2014).
S. N. Svirskaya, Piezoelectric Materials Science: Handbook [in Russian], Rostov-on-Don, SFedU (2009).
F. D. Morrison, Y. Luo, I. Szafraniak, et al., “Ferroelectric nanotubes,” Rev. Adv. Mater. Sci., 4, 114 – 122 (2003).
E. D. Mishina, N. E. Sherstyuk, V. O. Valdner, et al., “Nonlinear optical and micro-Raman diagnostics of thin films and nanostructures of ferroelectrics ABO3,” Fiz. Tverd. Tela, 48(6), 1140 – 1142 (2006).
X. Y. Zhang, X. Zhao, C. W. Lai, et al., “Synthesis and piezoresponse of highly ordered Pb(Zr0.53Ti0.47)O3 nanowire arrays,” Appl. Phys. Lett., 85(18), 4190 – 4192 (2004).
J. Kim, Y. C. Choi, and S. D. Bu, “Synthesis and characterization of lead zirconate titanate nanotubes,” Ferroelectrics, No. 356(1), 236 – 241 (2007).
M. R. Mohammadi, S. A. Tabei, A. Nemati, et al., “Synthesis and crystallization of lead–zirconium–titanate (PZT) nanotubes at low temperature using carbon nanotubes (CNTs) as sacrificial templates,” Adv. Powder Technol., No. 23, 647 – 654 (2012).
S. J. Limmer, S. Seraji, Y.Wu, et al., “Template-based growth of various oxide nanorods by sol-gel electrophoresis,” Adv. Funct. Mater., No. 12(1), 59 – 64 (2002).
A. Nourmohammadi, M. A. Bahrevar, and M. Hietschold, “Sol-gel electrophoretic deposition of PZT nanotubes,” Mater. Lett., No. 62, 3349 – 3351 (2008).
A. Nourmohammadi, M. A. Bahrevar, and M. Hietschold, “Template-based electrophoretic deposition of perovskite PZT nanotubes,” J. Alloys Compd., No. 473(1 – 2), 467 – 472 (2009).
L.-Q. Chenga and J.-F. Li, “A review on one dimensional perovskite nanocrystals for piezoelectric applications,” J. Materiomics, No. 2(1), 25 – 36 (2016).
E. C. Lima and E. B. Araujo, “Phase transformations in PZT thin films prepared by polymeric chemical method,” Adv. Mater. Phys. Chem., No. 2, 178 – 184 (2012).
B. Malic, J. Cilensek, M. Mandeljc, and M. Kosek, “Crystallization study of the alkoxide-based Pb(Zr0.30Ti0.70)O3 thin-film precursor,” Acta Chim. Slov., No. 52, 259 – 263 (2005).
S. A. Kukushkin, I. Yu. Tentilova, and I. P. Pronin, “Mechanism of phase transformation from pyrochlore phase to perovskite phase in lead zirconate titanate films on silicon substrates,” Fiz. Tverd. Tela [in Russian], 54(3), 571 – 575 (2012).
N. M. Kotova, Yu. V. Podgorny, D. S. Seregin, et al., “Influence of preparation methods of film-forming solutions on the electrophysical properties of ferroelectric lead zirconate titanate films,” Nano-Mikrosistem. Tekhn. [in Russian], No. 10, 11 – 16 (2010).
A. S. Sidorkin and L. P. Nesterenko, “Influence of synthesis parameters on ferroelectric properties of lead zirconate titanate films,” Okhrana, Bezopasnost’, Svyaz’, No. 5-1, 217 – 223 (2020).
J.Wang, Q. Gao, H. He, et al., “Fabrication and characterization of size-controlled single-crystal-like PZT nanofibers by sol-gel based electrospinning,” J. Alloys Compd., No. 579, 617 – 621 (2013).
T. Omori, H. Makita, M. Takamatsu, et al., “Preparation of piezoelectric PZT micro-discs by sol-gel method,” T. IEE Japan., 121-E(9), 496 – 500 (2001).
K. A. Vorotilov, O. M. Zhigalina, V. A. Vasil’ev, and A. S. Sigov, “Features of the formation of the crystalline structure of lead zirconate titanate in Si–SiO2–Ti(TiO2)–Pt–Pb(ZrxTi1–x)O3 systems,” Fiz. Tverd. Tela [in Russian], 51(7), 1268 – 1271 (2009).
M. Naksata, R. Brydson, and S. J. Milne, “Properties of lead zirconate titanate thin films prepared using a triol sol-gel route,” J. Am. Ceram. Soc., No. 86(9), 1560 – 1566 (2003).
S. Sadeghpour and R. Puers, “Optimization in the design and fabrication of a PZT piezoelectric micromachined ultrasound transducer (PMUT),” Proceedings, No. 2(13), 743 (2018).
J. Cheng, L. Luo, and Z. Meng, “Orientation of PZT thin films prepared by sol-gel techniques,” Proc. 6th Int. Conf. Prop. Appl. Dielectr. Mater., 930 – 934 (2020).
A. S. Sigov, K. A. Vorotilov, and O. M. Zhigalina, “Effect of lead content on microstructure of sol-gel PZT structures,” Ferroelectrics, No. 433(1), 146 – 157 (2012).
N. V. Mukhin, K. G. Elanskaya, V. M. Pukhova, et al., “Mechanisms of formation of heterophase ferroelectric films of lead zirconate titanate,” Izv. Vysh. Uchebn. Zaved. Rossii, Radioelektronika, No. 2, 26 – 36 (2018).
K. A. Vorotilov and N. V. Mukhin, “Influence of formation conditions of lead zirconate titanate films with different lead contents on their ferroelectric properties,” in: Mater. Mezhdunar. Nauch.-Tekhn. Konf., INTERMATIC-2014, Part 3, December 2 – 5, 2014, Moscow, MIREA [in Russian], Moscow (2014), pp. 185 – 188.
N. V. Mukhin, A. G. Altynnikov,M.M. Chigileychik, et al., “Influence of formation conditions of nanostructured heterophase oxide films on their photovoltaic and ferroelectric properties,” Izv. Vysh. Uchebn. Zaved. Rossii, Radioelektronika, Is. 4, 51 – 55 (2014).
A. Evcin, S. Akpinar, A. Kucuk, and D. B. Kepekci, “Sol-gel synthesis of PZT powders by microwave sintering,” in: Int. Ceram., Glass, Porcelain Enamel, Glaze Pigment Congr. (2009), pp. 681 – 686.
Y. N. Chen, Z. J.Wang, T. Yang, and Z. D. Zhang, “Crystallization kinetics of amorphous lead zirconate titanate thin films in a microwave magnetic field,” Acta Mater., No. 71, 1 – 10 (2014).
Bhaskar, T. H. Chang, H. Y. Chang, and S. Y. Cheng, “Low-temperature crystallization of sol-gel-derived lead zirconate titanate thin films using 2.45 GHz microwaves,” Thin Solid Films, No. 515, 2891 – 2896 (2007).
Y.-J. Zhang, Z. J. Wang, Y. Bai, et al., “Enhanced electrical properties of epitaxial PZT films deposited by sol-gel method and crystallized by microwave irradiation,” J. Alloys Compd., No. 757, 24 – 30 (2018).
Z. Wang, Y. Chen, Y. Otsuka, et al., “Crystallization of ferroelectric lead zirconate titanate thin films by microwave annealing at low temperatures,” J. Am. Ceram. Soc., No. 94(2), 404 – 409 (2010).
P. K. Sharma, Z. Ounaies, V. V. Varadan, and V. K. Varadan, “Dielectric and piezoelectric properties of microwave sintered PZT,” Smart Mater. Struct., No. 10, 878 – 883 (2001).
Malic and H. Suzuki, “Low-temperature processing of solution-derived ferroelectric thin films,” J. Ceram. Soc. Jpn., No. 122(1421), 1 – 8 (2014).
Author information
Authors and Affiliations
Corresponding author
Additional information
Translated from Steklo i Keramika, No. 6, pp. 49 – 59, June, 2024.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Paramonova, N.D., Danilov, E.A. & Vartanyan, M.A. Application of Sol-Gel Method for Synthesis of Nanostructured Piezoelectric Materials in Lead Zirconate-Titanate System (A Review). Part 2. Synthesis of Film and Rod Structures. Glass Ceram 81, 257–265 (2024). https://doi.org/10.1007/s10717-024-00693-y
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10717-024-00693-y