Skip to main content

Advertisement

Log in

Short-term restraint and emotional-painful stressors increase DNA instability in different brain areas of rats with contrast excitability

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Abstract

Stress-reaction developed after exposure to stressors of different natures, increases the level of DNA damage in cells of target organs, including the central nervous system. However, the time of stressing exposure needed to induce genome destabilization in different brain areas and individual differences in animals defining their brain cell genome response to stressors is unclear. In this research, we show that acute stressors (2-h immobilization or 13-min emotional-painful stressor) increase the level of DNA damage in at least one of the brain regions studied: the prefrontal cortex, hippocampus, and amygdala in rat strains with the high or low threshold of nerve tibialis excitability, and non-selected Wistar rats. The results reveal the interstrain differences in the genome response to acute stressors of each brain area, different from the repeated emotional-painful stressor effects shown earlier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (China (P.R.))

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Data reported in this study will be made available upon request from the corresponding author.

References

  1. Alt FW, Schwer B (2018) DNA double-strand breaks as drivers of neural genomic change, function, and disease. DNA repair 71:158–163. https://doi.org/10.1016/j.dnarep.2018.08.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Blouin AM, Sillivan SE, Joseph NF, Miller CA (2016) The potential of epigenetics in stress-enhanced fear learning models of PTSD. Learn Mem 23:576–586. https://doi.org/10.1101/lm.040485.115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Borysenko M, Borysenko J (1982) Stress, behavior, and immunity: Animal models and mediating mechanisms. Gen Hosp Psychiatry 4:59–67. https://doi.org/10.1016/0163-8343(82)90028-7

    Article  CAS  PubMed  Google Scholar 

  4. Claessens SE, Daskalakis NP, van der Veen R, Oitzl MS, de Kloet ER, Champagne DL (2011) Development of individual differences in stress responsiveness: an overview of factors mediating the outcome of early life experiences. Psychopharmacology 214:141–154. https://doi.org/10.1007/s00213-010-2118-y

    Article  CAS  PubMed  Google Scholar 

  5. Clinton SM, Unroe KA, Shupe EA, McCoy CR, Glover ME (2022) Resilience to stress: lessons from rodents about nature versus nurture. Neuroscientist 28:283–298. https://doi.org/10.1177/1073858421989357

    Article  PubMed  Google Scholar 

  6. Consiglio AR, Ramos AL, Henriques JA, Picada JN (2010) DNA brain damage after stress in rats. Prog Neuropsychopharmacol Biol Psychiatry 34:652–656. https://doi.org/10.1016/j.pnpbp.2010.03.004

    Article  CAS  PubMed  Google Scholar 

  7. Delint-Ramirez I, Konada L, Heady L, Rueda R, Jacome ASV, Marlin E, Marchioni C, Segev A, Kritskiy O, Yamakawa S, Reiter AH, Tsai LH, Madabhushi R (2022) Calcineurin dephosphorylates topoisomerase IIβ and regulates the formation of neuronal-activity-induced DNA breaks. Mol Cell 82:3794–3809.e8. https://doi.org/10.1016/j.molcel.2022.09.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Forsberg K, Aalling N, Wörtwein G, Loft S, Møller P, Hau J, Hageman I, Jørgensen MB, Jørgensen A (2015) Dynamic regulation of cerebral DNA repair genes by psychological stress. Mutat Res Genet Toxicol Environ Mutagen 778:37–43. https://doi.org/10.1016/j.mrgentox.2014.12.003

    Article  CAS  PubMed  Google Scholar 

  9. Hecht K, Trepetov K, Choinovski K, Peschel M (1972) Die raum-zetliche organization der reiz-reactios-beziehungen bedingtreflectorisher prozesse. Fisher, Schaffhausen, Switzerland.

  10. Iourov IY, Vorsanova SG, Kurinnaia OS, Kutsev SI, Yurov YB (2022) Somatic mosaicism in the diseased brain. Mol Cytogenet 15:45. https://doi.org/10.1186/s13039-022-00624-y

    Article  PubMed  PubMed Central  Google Scholar 

  11. Khan FA, Ali SO (2016) Physiological roles of DNA double-strand breaks. J Nucleic Acids 2017:6439169. https://doi.org/10.1155/2017/6439169

    Article  CAS  Google Scholar 

  12. Knezevic E, Nenic K, Milanovic V, Knezevic NN (2023) The role of cortisol in chronic stress, neurodegenerative diseases, and psychological disorders. Cells 12:2726. https://doi.org/10.3390/cells12232726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Konopka A, Atkin JD (2022) The role of DNA damage in neural plasticity in physiology and neurodegeneration. Front Cell Neurosci 16:836885. https://doi.org/10.3389/fncel.2022.836885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Marin MF, Lord C, Andrews J, Juster RP, Sindi S, Arsenault-Lapierre G, Fiocco AJ, Lupien SJ (2011) Chronic stress, cognitive functioning and mental health. Neurobiol Learn Mem 96:583–595. https://doi.org/10.1016/j.nlm.2011.02.016

    Article  PubMed  Google Scholar 

  15. Martins de Carvalho L, Chen WY, Lasek AW (2021) Epigenetic mechanisms underlying stress-induced depression. Int Rev Neurobiol 156:87–126. https://doi.org/10.1016/bs.irn.2020.08.001

    Article  CAS  PubMed  Google Scholar 

  16. Meaney MJ, Viau V, Bhatnagar S, Betito K, Iny LJ, O'Donnell D, Mitchell JB (1991) Cellular mechanisms underlying the development and expression of individual differences in the hypothalamic-pituitary-adrenal stress response. J Steroid Biochem Mol Biol 39:265–274. https://doi.org/10.1016/0960-0760(91)90072-d

    Article  CAS  PubMed  Google Scholar 

  17. Paré WP, Glavin GB (1986) Restraint stress in biomedical research: A review. Neurosci Biobehav Rev 10:339–370. https://doi.org/10.1016/0149-7634(86)90017-5

    Article  PubMed  Google Scholar 

  18. Paxinos G, Watson C (2007) The Rat Brain in Stereotaxic Coordinates (6th ed.). Academic Press, San Diego, CA, USA.

    Google Scholar 

  19. Proukakis C (2020) Somatic mutations in neurodegeneration: An update. Neurobiol Dis 144:105021. https://doi.org/10.1016/j.nbd.2020.105021

    Article  CAS  PubMed  Google Scholar 

  20. Schöner J, Heinz A, Endres M, Gertz K, Kronenberg G (2017) Post-traumatic stress disorder and beyond: an overview of rodent stress models. J Cell Mol Med 21:2248–2256. https://doi.org/10.1111/jcmm.13161

    Article  PubMed  PubMed Central  Google Scholar 

  21. Selye H (1936) A syndrome produced by diverse nocuous agents. Nature 138:32

    Article  Google Scholar 

  22. Senba E, Ueyama T (1997) Stress-induced expression of immediate early genes in the brain and peripheral organs of the rat. Neurosci Res 29:183–207. https://doi.org/10.1016/s0168-0102(97)00095-3

    Article  CAS  PubMed  Google Scholar 

  23. Shcherbinina VD, Bakulevskiy BV, Glinin TS, Daev EV (2023) Genome instability of hippocampal and bone marrow cells in male mice exposed to immobilization and female pheromone stressor. J Evol Biochem Physiol 59:1215–1228. https://doi.org/10.1134/S0022093023040154

    Article  CAS  Google Scholar 

  24. Shcherbinina V, Pavlova M, Daev E, Dyuzhikova N (2024) Rats selected for different nervous excitability: long-term emotional–painful stress affects the dynamics of DNA damage in cells of several brain areas. Int J Mol Sci 25:994. https://doi.org/10.3390/ijms25020994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Stott RT, Kritsky O, Tsai L-H (2021) Profiling DNA break sites and transcriptional changes in response to contextual fear learning. PLoS ONE 16:e0249691. https://doi.org/10.1371/journal.pone.0249691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Suberbielle E, Sanchez PE, Kravitz AV, Wang X, Ho K, Eilertson K, Devidze N, Kreitzer AC, Mucke L (2013) Physiologic brain activity causes DNA double-strand breaks in neurons, with exacerbation by amyloid-β. Nat Neurosci 16:613–621. https://doi.org/10.1038/nn.3356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Swaab DF, Bao AM, Lucassen PJ (2005) The stress system in the human brain in depression and neurodegeneration. Ageing Res Rev 4:141–194. https://doi.org/10.1016/j.arr.2005.03.003

    Article  CAS  PubMed  Google Scholar 

  28. Weber Boutros S, Unni VK, Raber J (2022) An Adaptive Role for DNA Double-Strand Breaks in Hippocampus-Dependent Learning and Memory. Int J Mol Sci 23:8352. https://doi.org/10.3390/ijms23158352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Vaido AI, Shiryaeva NV, Pavlova MB, Levina AS, Khlebaeva DA-A, Lyubashina OA, Dyuzhikova NA (2018) Selected rat strains HT, LT as a model for the study of dysadaptation states dependent on the level of excitability of the nervous system. Lab Zhivotnye Dlia Nauchnykh Issled 3:205. https://doi.org/10.29296/2618723X-2018-03-02

Download references

Funding

The study was supported by the State funding allocated to the Pavlov Institute of Physiology Russian Academy of Sciences (№ 1021062411629–7-3.1.4).

Author information

Authors and Affiliations

Authors

Contributions

Veronika Shcherbinina: Formal analysis, Investigation, Data Curation, Writing—Original Draft, Visualization. Eugene Daev: Conceptualization, Writing—Review & Editing, Supervision. Marina Pavlova: Methodology, Investigation, Writing—Review & Editing. Natalia Dyuzhikova: Conceptualization, Methodology, Resources, Writing—Review & Editing, Supervision, Project administration, Funding acquisition.

Corresponding author

Correspondence to Veronika Shcherbinina.

Ethics declarations

Ethics

All animal experiments were conducted in accordance with the Council of the European community directives (86/609/EEC) on the use of animals for experimental research. The experimental protocol was approved by the Animal Care and Use Committee at the Pavlov Institute of Physiology of RAS (protocol No. 01/16 of 16 January 2023).

Competing interest

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shcherbinina, V., Daev, E., Pavlova, M. et al. Short-term restraint and emotional-painful stressors increase DNA instability in different brain areas of rats with contrast excitability. Neurosci Behav Physi (2024). https://doi.org/10.1007/s11055-024-01692-w

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11055-024-01692-w

Keywords

Navigation