Skip to main content
Log in

Preparation of a Stable Super-Amphiphobic Coating via a Simple Sol–Gel Method

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

It is well known that super-hydrophobic materials have a wide application prospect. However, many methods for preparing super-amphiphobic coatings are too complicated or have poor stability, which limits the practical application of super-amphiphobic materials. In this paper, a stable and durable super-amphiphobic coating is prepared on the fabric surface via a simple sol-gel method. The water and vegetable oil contact angles of this coating are 160.5 ± 0.8° and 154.8 ± 2.6°, respectively. Specifically, the super-amphiphobic coating is prepared by grafting nano-silica on the surface of the fabric by a simple sol-gel method, and then grafted 1H, 1H,2H,2H-perfluorodecyltrimethoxysilane (FAS-17) as a hydrophobic modifier. After various chemical and mechanical stability tests, including concentrated ammonia solution soaking, saturated sodium hydroxide solution soaking, concentrated salt solution soaking, and THF soaking with stirring, the coating still maintains hydrophobicity. And the coating has excellent air permeability, which is expected to have great potential in the field of special protection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (China (P.R.))

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

REFERENCES

  1. Li, L., Breedveld, V., and Hess, D.W., Design and fabrication of superamphiphobic paper surfaces, ACS Appl. Mater. Interfaces, 2013, vol. 5, no. 11, pp. 5381–5386. https://doi.org/10.1021/am401436m

    Article  CAS  PubMed  Google Scholar 

  2. Marmur, A., Della Volpe, C., Siboni, S., Amirfazli, A., and Drelich, J.W., Contact angles and wettability: Towards common and accurate terminology, Surf. Innovations, 2017, vol. 5, no. 1, pp. 3–8. https://doi.org/10.1680/jsuin.17.00002

    Article  Google Scholar 

  3. Jiao, X., Li, M., Yu, X., Wong, W.S., and Zhang, Y., Oil-immersion stable superamphiphobic coatings for long-term super liquid-repellency, Chem. Eng. J., 2021, vol. 420, p. 127606. https://doi.org/10.1016/j.cej.2022.136384

    Article  CAS  Google Scholar 

  4. Gja, B., Xna, B., Wla, B., Quan, X., and Luo, X., Super-amphiphobic, strong self-cleaning and high-efficiency water-based drilling fluids, Pet. Explor. Dev., 2020, vol. 47, no. 2, pp. 421–429. https://doi.org/10.1016/S1876-3804(20)60059-3

    Article  Google Scholar 

  5. Feng, Y., Peng, C., Hu, J., Wang, F., Xu, Z., and Huang, Q., Robust wear and pH endurance achieved on snake-shaped silica hybrid nanowire self-woven superamphiphobic membranes with layer-stacked porous 3D networks, J. Mater. Chem. A, 2018, vol. 6, no. 29, pp. 14262–14271. https://doi.org/10.1039/c8ta03939a

    Article  CAS  Google Scholar 

  6. Shen, J., Ming, P.M., Zhang, X.M., Yan, L., Zheng, X., and Wang, W., Broad spectrum anti-fouling, photocatalytic antibacterial and superamphiphobic coating fabricated by composite electrodeposition process, J. Electrochem. Soc., 2019, vol. 166, no. 16, pp. 564–575. https://doi.org/10.1149/2.0101916jes

    Article  CAS  Google Scholar 

  7. Luo, X., Jiang, G., Wang, G., Yang, L., He, Y., Cui, X., and Yang, J., Novel approach to improve shale stability using super-amphiphobic nanoscale materials in water-based drilling fluids and its field application, Rev. Adv. Mater. Sci., 2022, vol. 61, no. 1, pp. 41–54. https://doi.org/10.1515/rams-2022-0003

    Article  CAS  Google Scholar 

  8. Xu, Z., Yan, Z., Wang, H., Wang, X., and Lin, T., A superamphiphobic coating with ammonia-triggered transition to superhydrophilic and superoleophobic for oil-water separation, Angew. Chem., 2015, vol. 54, no. 15, pp. 4527–4530. https://doi.org/10.1002/anie.201411283

    Article  CAS  Google Scholar 

  9. Schlaich, C., Camacho, L.C., Yu, L., Achazi, K., Wei, Q., and Haag, R., Surface-independent hierarchical coatings with superamphiphobic properties, ACS Appl. Mater. Interfaces, 2016, vol. 8, no. 42, pp. 29117–29127. https://doi.org/10.1021/acsami.6b08487

    Article  CAS  PubMed  Google Scholar 

  10. Chruciel, J., Modifications of textile materials with functional silanes, liquid silicone softeners, and silicone rubbers—A review, Polymers, 2022, vol. 14, no. 20, p. 4382. https://doi.org/10.3390/polym14204382

    Article  CAS  Google Scholar 

  11. Lian, Z., Xu, J., Wang, Z., Wan, Y., Zhang, L., and Yu, H., Research on HS-WEDM and chemical etching technology of superamphiphobic surfaces on Al substrates, Micro Nano Lett., 2016, vol. 11, no. 8, pp. 425–429. https://doi.org/10.1049/mnl.2015.0573

    Article  CAS  Google Scholar 

  12. Li, W., Zong, Y., Liu, Q., Sun, Y., Li, Z., Wang, H., and Li, Z., A highly stretchable and biodegradable superamphiphobic fluorinated polycaprolactone nanofibrous membrane for antifouling, Prog. Org. Coat., 2020, vol. 147, p. 105776. https://doi.org/10.1016/j.porgcoat.2020.105776

    Article  CAS  Google Scholar 

  13. Sun, Y., Huang, J., and Guo, Z. A superamphiphobic surface with a hydrogen peroxide-triggered switch to antithetic fluid repellence in a liquid-liquid-air three-phase fluid system, Chem. Commun., 2020, vol. 56, no. 31, pp. 4312–4315. https://doi.org/10.1039/d0cc01047b

    Article  CAS  Google Scholar 

  14. Yeerken, T., Wang, G., Li, H., and Yu, W., Chemical stable, superhydrophobic and self-cleaning fabrics prepared by two-step coating of a polytetrafluoroethylene membrane and silica nanoparticles, Text. Res. J., 2019, vol. 89, no. 23–24, pp. 4827–4841. https://doi.org/10.1177/0040517519842795

    Article  CAS  Google Scholar 

  15. Zhang, J., Zhu, L., Zhao, S., Wang, D., and Guo, Z., A robust and repairable copper-based superhydrophobic microfiltration membrane for high-efficiency water-in-oil emulsion separation, Sep. Purif. Technol., 2021, vol. 256, p. 117751. https://doi.org/10.1016/j.seppur.2020.117751

    Article  CAS  Google Scholar 

  16. Pan, S., Guo, R., Bjrnmalm, M., Richardson, J.J., Li, L., Peng, C., Bertleff-Zieschang, N., Xu, W., Jiang, J., and Caruso, F., Coatings superrepellent to ultralow surface tension liquids, Nat. Mater., 2018, vol. 17, no. 11, pp. 1040–1047. https://doi.org/10.1038/s41563-018-0178-2

    Article  CAS  PubMed  Google Scholar 

  17. He, Z., Ma, M., Xu, X., Wang, J., Chen, F., Deng, H., Wang, K., Zhang, Q., and Fu, Q., Fabrication of su-pe-rhydrophobic coating via a facile and versatile method based on nanoparticle aggregates, Appl. Surf. Sci., 2012, vol. 258, no. 7, pp. 2544–2550. https://doi.org/10.1016/j.apsusc.2011.10.090

    Article  CAS  Google Scholar 

  18. Wang, H., Zhou, H., Gestos, A., Fang, J., and Lin, T., Robust, superamphiphobic fabric with multiple self-healingability against both physical and chemical damages, ACS Appl. Mater. Interfaces, 2013, vol. 5, no. 20, pp. 10221–10226. https://doi.org/10.1021/am4029679

    Article  CAS  PubMed  Google Scholar 

  19. Zhang, Z., Xue, F., Bai, W., Shi, X., Liu, Y., and Feng, L., Superhydrophobic surface on Al alloy with robust durability and excellent self-healing performance, Surf. Coat. Technol., 2021, vol. 410, p. 126952. https://doi.org/10.1016/j.surfcoat.2021.126952

    Article  CAS  Google Scholar 

  20. Zimmermann, J., Reifler, F.A., Fortunato, G., Gerhardt, L.-C., and Seeger, S., A simple, one-step approach to durable and robust superhydrophobic textiles, Adv. Funct. Mater., 2008, vol. 18, no. 22, pp. 3662–3669. https://doi.org/10.1002/adfm.200800755

    Article  CAS  Google Scholar 

  21. Lu, Y., Sathasivam, S., Song, J., Crick, C.R., and Parkin, I.P., Robust self-cleaning surfaces that function when exposed to either air or oil, Science, 2015, vol. 347, no. 6226, pp. 1132–1135. https://doi.org/10.1126/science.aaa0946

    Article  CAS  PubMed  Google Scholar 

  22. Zhao, S., Liang, Y., Yang, Y., Huang, J., Guo, Z., and Liu, W., A robust surface with superhydrophobicity and underwater superoleophobicity for on-demand oil/water separation, Nanoscale, 2021, vol. 13, no. 36, pp. 15334–15342. https://doi.org/10.1039/D1NR04658F

    Article  CAS  PubMed  Google Scholar 

  23. Sheen, Y., Chang, W., Chen, W., Chang, Y.-H., Huang, Y.-C., and Chang, F.-C. Non-fluorinated superamphiphobic surfaces through sol-gel processing of methyltriethoxysilane and tetraethoxysilane, Mater. Chem. Phys., 2009, vol. 114, no. 1, pp. 63–68. https://doi.org/10.1016/j.matchemphys.2008.07.132

    Article  CAS  Google Scholar 

  24. Pan, G., Xiao, X., Yu, N., and Ye, Z., Fabrication of superhydrophobic coatings on cotton fabric using ultrasound-assisted in-situ growth method, Prog. Org. Coat., 2018, vol. 125, pp. 463–471. https://doi.org/10.1016/j.porgcoat.2018.09.026

    Article  CAS  Google Scholar 

  25. Chen, J., Liu, Z., Wen, X., Xu, S., Wang, F., and Pi, P., Two-step approach for fabrication of durable superamphiphobic fabrics for self-cleaning, antifouling, and on-demand oil/water separation, Ind. Eng. Chem. Res., 2019, vol. 58, no. 14, pp. 5490–5500. https://doi.org/10.1021/acs.iecr.9b00049

    Article  CAS  Google Scholar 

  26. Standard GB/T 1568: Tensile Properties of Textile Fabrics, 1997.

  27. Standard GB/T 5453: Determination of Air Permeability of Textile Fabrics, 1997.

  28. Standard GB/T 12704.1: Test Method for Moisture Permeability of Textile Fabrics, 2009.

  29. Abdelmouleh, M., Boufi, S., Belgacem, M.N., Duarte, A.P., Salah, A.B., and Gandini, A., Modification of cellulosic fibres with functionalised silanes: Development of surface properties, Int. J. Adhes. Adhes., 2004, vol. 24, no. 1, pp. 43–54. https://doi.org/10.1016/S0143-7496(03)00099-X

    Article  CAS  Google Scholar 

  30. Boinovich, L.B., Superhydrophobic coatings as a new class of polyfunctional materials, Herald Russ. Acad. Sci., 2013, vol. 83, no. 1, pp. 8–18. https://doi.org/10.1134/S1019331613010024

    Article  Google Scholar 

  31. Boinovich, L.B. and Emelyanenko, A.M., The behaviour of fluoro- and hydrocarbon surfactants used for fabrication of superhydrophobic coatings at solid/water interface, Colloids Surf., A, 2015, vol. 481, pp. 167–175. https://doi.org/10.1016/j.colsurfa.2015.05.003

    Article  CAS  Google Scholar 

  32. Qu, M., Liu, L., Qian, L., Li, J., Yang, C., Yang, X., Li, K., Liu, X., and He, J., Highly stable superamphiphobic material with ethanol-triggered switchable wettability for high-efficiency on-demand oil–water separation, J. Mater. Sci., 2021, vol. 56, pp. 2961–2978. https://doi.org/10.1007/s10853-020-05418-4

    Article  CAS  Google Scholar 

  33. Feng, L., Li, S., Li, Y., Li, H.J., Zhang, L., Zhai, J., Song, Y., Liu, B., Jiang, L., and Zhu, D., Super-hydrophobic surfaces: From natural to artificial, Adv. Mater., 2002, vol. 14, no. 24, pp. 1857–1860. https://doi.org/10.1002/chin.200307200

    Article  CAS  Google Scholar 

  34. Qu, Z., Wang, F., Liu, P., Yu, Q., and Brouwers, H., Super-hydrophobic magnesium oxychloride cement (MOC): From structural control to self-cleaning property evaluation, Mater. Struct., 2020, vol. 53, no. 2, p. 30. https://doi.org/10.1617/s11527-020-01462-3

    Article  CAS  Google Scholar 

  35. Standard GB19082: Technical Requirements for Medical Disposable Protective Clothing, 2009.

Download references

ACKNOWLEDGMENTS

We are very grateful for the support of the National Foundation of China.

Funding

This project is supported by the National Natural Science Foundation of China (NSFC, No. 52370186).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. F. Jin.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, K.K., Jin, G.F., Lv, X.M. et al. Preparation of a Stable Super-Amphiphobic Coating via a Simple Sol–Gel Method. Colloid J (2024). https://doi.org/10.1134/S1061933X24600301

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S1061933X24600301

Keywords:

Navigation