Skip to main content

A Beam—Just a Beam in Linear Plane Bending

  • Chapter
  • First Online:
Recent Developments in the Theory of Shells

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 110))

Abstract

Starting from the equations of the linear, three-dimensional theory of elasticity, the displacements are expanded into power series in the width- and height-coordinates. By invoking the uniform-approximation method in combination with the pseudo-reduction technique, a hierarchy of beam theories of different orders of approximation is established. The first-order approximation coincides with the classical Euler-Bernoulli beam theory, whereas the second-order approximation delivers a Timoshenko-type of shear-deformable beam theory. Differences and implications are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (China (P.R.))
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (China (P.R.))
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 149.99
Price excludes VAT (China (P.R.))
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
EUR 149.99
Price excludes VAT (China (P.R.))
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Schneider, P., Kienzler, R.: On exact rod/beam/shaft-theories and the coupling among them due to arbitrary material anisotropy. Int. J. Solids Struct. 56–57, 265–279 (2015)

    Article  Google Scholar 

  2. Almansi, E: Sopra la deformazione del cilindri sollicitati lateralmento. Atti Real Accad. Naz. Lincei Rend. Cl sci. fis. mat.e natur. Ser. 5, 400–408 (1901)

    Google Scholar 

  3. Michell, J.: The theory of uniformly loaded beams. Q. J. Math. 32, 28–42 (1901)

    Google Scholar 

  4. Saint-Venant, A. Barré de: Mémoire sur la torsion des prismes: avec des considerations sur leur flexion ainsi que sur l’equilibre interieur des solides élastiques en general: et des furmules practiques pour le calcul de leur résistance á divers efforts s’exerçant simultanément. Imprimiere nationale (1856)

    Google Scholar 

  5. Ciarlet, P., Destuynder, P.: A justification of the two-dimensional linear plate model. J. Mech. 18, 315–344 (1979), Paris

    Google Scholar 

  6. Giorgi, E.D.: Sulla convergenza di alcune successioni di integrali del tipo dell’aera. Rud. Mat. Appl. 8, 279–294 (1975)

    Google Scholar 

  7. Friesecke, G., James, R.D., Müller, S.: A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity. Commun. Pure Appl. Math. 55, 1461–1506 (2002)

    Article  Google Scholar 

  8. Vekua, I.: Shell theory: general methods of construction. Monographs. Advanced Texts and Surveys in Pure and Applied Mathematics. John Wiley & Sons, New York (1985)

    Google Scholar 

  9. Steigmann, D.J.: Two dimensional models for the combined bending and stretching of plates and shells based on three-dimensional linear elasticity. Int. J. Eng. Sci. 46, 654–676 (2008)

    Article  Google Scholar 

  10. Pruchnicki, E.: Two-dimensional model of order h5 for the combined bending, stretching, transverse shearing and transverse normal stress effects of homogeneous plates derived from three-dimensional elasticity. Math. Mech. Solids 19, 477–490 (2014)

    Article  Google Scholar 

  11. Naghdi, P. M.: Foundations of elastic shell theory. Progress in Solid Mechanics IV. North-Holland, Amsterdam (1963)

    Google Scholar 

  12. Koiter, W.: On the foundation of the linear theory of thin elastic shells. Koninklije Nederlandse Akademie van Wettenschappen, Proceedings B 73, 169–195 (1970)

    Google Scholar 

  13. Krätzig, W.: On the structure of consistent linear shell theories. In: Koiter, W., Mikhailov, G. (eds.) Theory of plates and shells, pp. 359–368. North-Holland, Amsterdam (1980)

    Google Scholar 

  14. Kienzler, R.: Eine Erweiterung der klassischen Schalentheorie; Der Einfluss von Dickenverzerrungen und Querschnittsverwölbungen. Ing. Arch. 52, 311–322 (1982). Extended version in Ph.D.-Thesis, Technische Hochschule Darmstadt, Darmstadt (1980)

    Google Scholar 

  15. Kienzler, R.: On consistent plate theories. Arch. Appl. Mech. 72, 229–247 (2002)

    Article  Google Scholar 

  16. Kienzler, R.: On consistent second-order plate theories. In: Kienzler, R., Ott, I., Altenbach, H. (eds.) Theories of Plates and Shells: Critical Review and New Applications, pp. 85–96. Springer, Berlin (2004)

    Chapter  Google Scholar 

  17. Schneider, P., Kienzler, R., Böhm, M.: Modeling of consistent second-order plate theories for anisotropic materials. Z. Angew. Math. Mech. 94, 21–42 (2014)

    Article  Google Scholar 

  18. Schneider, P.: On the mathematical justification of the consistent-approximation approach and the derivation of a shear-correction-factor free refined beam theory. Dissertation. University Bremen (2015). http://nbn-resolving.de/um:nbn:de:gbv:46-00104458-18

  19. Schneider, P., Kienzler, R.: An algorithm for the automatisation of pseudo reduction of PDE systems arising from the uniform-approximation technique. In: Altenbach, H., Eremeyev, V. (Eds.), Shell-like structures. Advanced structural Materials, vol. 15, pp. 377–390. Springer, Berlin (2011)

    Google Scholar 

  20. Kienzler, R., Schneider, P.: Consistent theories of isotropic and anisotropic plates. J. Theor. Appl. Mech. 25, 755–768 (2012)

    Google Scholar 

  21. Schneider, P., Kienzler, R.: A Reissner-type plate theory for monoclinic material derived by extending the uniform-approximation technique by orthogonal tensor decomposition of the nth-order gradient. Meccanica 52, 2143–2167 (2017)

    Article  Google Scholar 

  22. Kienzler, R., Schneider, P.: Second-order linear plate theories: Partial differential equations, stress-resultants and displacements. Int. J. Solids Struct. 115–116, 14–26 (2017)

    Article  Google Scholar 

  23. Reissner, E.: On the theory of bending of elastic plates. J. Math. Phys. 23, 184–191 (1944)

    Article  Google Scholar 

  24. Reissner, E.: The effect of transverse shear deformation on the bending of elastic plates. J. Appl. Mech. 12, 89–77 (1945)

    Google Scholar 

  25. Timoshenko, S.: On the correction for shear of the differential equation for transverse vibrations of prismatic bars. Philos. Mag. Ser. 6(41), 744–746 (1920)

    Google Scholar 

  26. Timoshenko, S.: On the transverse vibrations of bars of uniform cross-section. Philos. Mag. Ser. 6(43), 125–131 (1922)

    Article  Google Scholar 

  27. Timoshenko, S., Young, D.H.: Elements of strength of materials, 4th edn. Van Nostrand, Princeton, New Jersey, USA (1962)

    Google Scholar 

  28. Olsson, R.G.: Zur Berechnung der Frequenz der Transversalschwingung des prismatischen Stabes. Z. Angew. Math. Mech. 15, 245 (1935)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reinhold Kienzler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kienzler, R., Schneider, P. (2019). A Beam—Just a Beam in Linear Plane Bending. In: Altenbach, H., Chróścielewski, J., Eremeyev, V., Wiśniewski, K. (eds) Recent Developments in the Theory of Shells . Advanced Structured Materials, vol 110. Springer, Cham. https://doi.org/10.1007/978-3-030-17747-8_18

Download citation

Publish with us

Policies and ethics