Abstract
Starting from the equations of the linear, three-dimensional theory of elasticity, the displacements are expanded into power series in the width- and height-coordinates. By invoking the uniform-approximation method in combination with the pseudo-reduction technique, a hierarchy of beam theories of different orders of approximation is established. The first-order approximation coincides with the classical Euler-Bernoulli beam theory, whereas the second-order approximation delivers a Timoshenko-type of shear-deformable beam theory. Differences and implications are discussed.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Schneider, P., Kienzler, R.: On exact rod/beam/shaft-theories and the coupling among them due to arbitrary material anisotropy. Int. J. Solids Struct. 56–57, 265–279 (2015)
Almansi, E: Sopra la deformazione del cilindri sollicitati lateralmento. Atti Real Accad. Naz. Lincei Rend. Cl sci. fis. mat.e natur. Ser. 5, 400–408 (1901)
Michell, J.: The theory of uniformly loaded beams. Q. J. Math. 32, 28–42 (1901)
Saint-Venant, A. Barré de: Mémoire sur la torsion des prismes: avec des considerations sur leur flexion ainsi que sur l’equilibre interieur des solides élastiques en general: et des furmules practiques pour le calcul de leur résistance á divers efforts s’exerçant simultanément. Imprimiere nationale (1856)
Ciarlet, P., Destuynder, P.: A justification of the two-dimensional linear plate model. J. Mech. 18, 315–344 (1979), Paris
Giorgi, E.D.: Sulla convergenza di alcune successioni di integrali del tipo dell’aera. Rud. Mat. Appl. 8, 279–294 (1975)
Friesecke, G., James, R.D., Müller, S.: A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity. Commun. Pure Appl. Math. 55, 1461–1506 (2002)
Vekua, I.: Shell theory: general methods of construction. Monographs. Advanced Texts and Surveys in Pure and Applied Mathematics. John Wiley & Sons, New York (1985)
Steigmann, D.J.: Two dimensional models for the combined bending and stretching of plates and shells based on three-dimensional linear elasticity. Int. J. Eng. Sci. 46, 654–676 (2008)
Pruchnicki, E.: Two-dimensional model of order h5 for the combined bending, stretching, transverse shearing and transverse normal stress effects of homogeneous plates derived from three-dimensional elasticity. Math. Mech. Solids 19, 477–490 (2014)
Naghdi, P. M.: Foundations of elastic shell theory. Progress in Solid Mechanics IV. North-Holland, Amsterdam (1963)
Koiter, W.: On the foundation of the linear theory of thin elastic shells. Koninklije Nederlandse Akademie van Wettenschappen, Proceedings B 73, 169–195 (1970)
Krätzig, W.: On the structure of consistent linear shell theories. In: Koiter, W., Mikhailov, G. (eds.) Theory of plates and shells, pp. 359–368. North-Holland, Amsterdam (1980)
Kienzler, R.: Eine Erweiterung der klassischen Schalentheorie; Der Einfluss von Dickenverzerrungen und Querschnittsverwölbungen. Ing. Arch. 52, 311–322 (1982). Extended version in Ph.D.-Thesis, Technische Hochschule Darmstadt, Darmstadt (1980)
Kienzler, R.: On consistent plate theories. Arch. Appl. Mech. 72, 229–247 (2002)
Kienzler, R.: On consistent second-order plate theories. In: Kienzler, R., Ott, I., Altenbach, H. (eds.) Theories of Plates and Shells: Critical Review and New Applications, pp. 85–96. Springer, Berlin (2004)
Schneider, P., Kienzler, R., Böhm, M.: Modeling of consistent second-order plate theories for anisotropic materials. Z. Angew. Math. Mech. 94, 21–42 (2014)
Schneider, P.: On the mathematical justification of the consistent-approximation approach and the derivation of a shear-correction-factor free refined beam theory. Dissertation. University Bremen (2015). http://nbn-resolving.de/um:nbn:de:gbv:46-00104458-18
Schneider, P., Kienzler, R.: An algorithm for the automatisation of pseudo reduction of PDE systems arising from the uniform-approximation technique. In: Altenbach, H., Eremeyev, V. (Eds.), Shell-like structures. Advanced structural Materials, vol. 15, pp. 377–390. Springer, Berlin (2011)
Kienzler, R., Schneider, P.: Consistent theories of isotropic and anisotropic plates. J. Theor. Appl. Mech. 25, 755–768 (2012)
Schneider, P., Kienzler, R.: A Reissner-type plate theory for monoclinic material derived by extending the uniform-approximation technique by orthogonal tensor decomposition of the nth-order gradient. Meccanica 52, 2143–2167 (2017)
Kienzler, R., Schneider, P.: Second-order linear plate theories: Partial differential equations, stress-resultants and displacements. Int. J. Solids Struct. 115–116, 14–26 (2017)
Reissner, E.: On the theory of bending of elastic plates. J. Math. Phys. 23, 184–191 (1944)
Reissner, E.: The effect of transverse shear deformation on the bending of elastic plates. J. Appl. Mech. 12, 89–77 (1945)
Timoshenko, S.: On the correction for shear of the differential equation for transverse vibrations of prismatic bars. Philos. Mag. Ser. 6(41), 744–746 (1920)
Timoshenko, S.: On the transverse vibrations of bars of uniform cross-section. Philos. Mag. Ser. 6(43), 125–131 (1922)
Timoshenko, S., Young, D.H.: Elements of strength of materials, 4th edn. Van Nostrand, Princeton, New Jersey, USA (1962)
Olsson, R.G.: Zur Berechnung der Frequenz der Transversalschwingung des prismatischen Stabes. Z. Angew. Math. Mech. 15, 245 (1935)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Kienzler, R., Schneider, P. (2019). A Beam—Just a Beam in Linear Plane Bending. In: Altenbach, H., Chróścielewski, J., Eremeyev, V., Wiśniewski, K. (eds) Recent Developments in the Theory of Shells . Advanced Structured Materials, vol 110. Springer, Cham. https://doi.org/10.1007/978-3-030-17747-8_18
Download citation
DOI: https://doi.org/10.1007/978-3-030-17747-8_18
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-17746-1
Online ISBN: 978-3-030-17747-8
eBook Packages: Chemistry and Materials ScienceChemistry and Material Science (R0)