Skip to main content

Fractal Landscape

  • Reference work entry
  • First Online:
Encyclopedia of Mathematical Geosciences

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

Definition

Fractals are objects with scale-invariant geometry, introduced to describe the non-Euclidian shape of natural phenomena. Fractal dimension, which is proportionate to the degree of space filled by an object withing its embedding space, is generally used to describe the fractal geometry of natural landscapes. Multifractal geometry results, if we have heterogeneity of space filling across the embedding space. Fractal properties of landscape can often be quantitatively related to the spatio-temporal scale of the associated governing natural processes, which provides novel insights into the nonlinear dynamics ubiquitous in nature.

Introduction

Many natural phenomena look similarly complex under different resolutions, a property known as scale-invariance (not to be confused with scale-independence). Without an object with a representative dimension, often referred to as a scale in the geological literature, it is impossible to determine whether the object in a picture covers a few...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (China (P.R.))
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 641.99
Price includes VAT (China (P.R.))
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 649.99
Price excludes VAT (China (P.R.))
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Baas AC (2002) Chaos, fractals and self-organization in coastal geomorphology: simulating dune landscapes in vegetated environments. Geomorphology 48(1–3):309–328

    Google Scholar 

  • Baynes ER, Lague D, Attal M, Gangloff A, Kirstein LA, Dugmore AJ (2018) River self-organisation inhibits discharge control on waterfall migration. Sci Rep 8(1):1–8

    Article  Google Scholar 

  • Camara J, Gómez-Miguel V, Martín MÁ (2016) Identification of bedrock lithology using fractal dimensions of drainage networks extracted from medium resolution LiDAR digital terrain models. Pure Appl Geophys 173(3):945–961

    Article  Google Scholar 

  • Chin CS (2002) Passive random walkers and riverlike networks on growing surfaces. Phys Rev E 66(2):021104

    Article  Google Scholar 

  • Donadio C, Paliaga G, Radke JD (2020) Tsunamis and rapid coastal remodeling: linking energy and fractal dimension. Prog Phys Geogr Earth Environ 44(4):550–571

    Article  Google Scholar 

  • Duclut C, Delamotte B (2017) Nonuniversality in the erosion of tilted landscapes. Physical Review E 96(1):012149(1–10)

    Google Scholar 

  • Dutta S (2017) Decoding the morphological differences between himalayan glacial and fluvial landscapes using multifractal analysis. Sci Rep 7(1):1–8

    Article  Google Scholar 

  • Evertsz CJG, Mandelbrot BB (1992) Multifractal measures. In: Peitgen HO, Hartmut J, Saupe D (eds) Chaos and fractals: new Frontiers of science. Springer, New York, pp 849–881

    Google Scholar 

  • Fowler AD (1995) Mineral crystallinity in igneous rocks. In: Fractals in the earth sciences. Springer, Boston, pp 237–249

    Chapter  Google Scholar 

  • Gipp MR (2001) Interpretation of climate dynamics from phase space portraits: is the climate system strange or just different? Paleoceanography 16(4):335–351

    Article  Google Scholar 

  • Gou S, Yue Z, Di K, Xu Y (2019) Comparative study between rivers in Tarim Basin in Northwest China and Evros Vallis on Mars. Icarus 328:127–140

    Article  Google Scholar 

  • Halsey TC, Jensen MH, Kadanoff LP, Procaccia I, Shraiman BI (1986) Fractal measures and their singularities: the characterization of strange sets. Phys Rev A 33(2):1141

    Article  Google Scholar 

  • Horton RE (1945) Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology. Geol Soc Am Bull 56(3):275–370

    Article  Google Scholar 

  • Indira NK, Singh RN, Yajnik KS (1996) Fractal analysis of sea level variations in coastal regions of India. Curr Sci 70(8):719–723

    Google Scholar 

  • Keiler M (2011) Geomorphology and complexity-inseparably connected? Zeitschrift fur Geomorphologie-Supplementband 55(3):233–257

    Article  Google Scholar 

  • Liucci L, Melelli L (2017) The fractal properties of topography as controlled by the interactions of tectonic, lithological, and geomorphological processes. Earth Surf Process Landf 42(15):2585–2598

    Article  Google Scholar 

  • Lovejoy S, Schertzer D (1990) Multifractals, universality classes and satellite and radar measurements of cloud and rain fields. J Geophys Res Atmos 95(D3):2021–2034

    Article  Google Scholar 

  • Mandelbrot B (1967) How long is the coast of Britain? Statistical self-similarity and fractional dimension. Science 156(3775):636–638

    Article  Google Scholar 

  • Mandelbrot BB (1982) The fractal geometry of nature, vol 1. WH freeman, New York

    Google Scholar 

  • Mareschal JC (1989) Fractal reconstruction of sea-floor topography. In: Fractals in geophysics. Birkhäuser, Basel, pp 197–210

    Chapter  Google Scholar 

  • Molnar P, England P (1990) Late Cenozoic uplift of mountain ranges and global climate change: chicken or egg? Nature 346(6279):29–34

    Article  Google Scholar 

  • Morel S, Bouchaud E, Schmittbuhl J, Valentin G (2002) R-curve behavior and roughness development of fracture surfaces. Int J Fract 114(4):307–325

    Article  Google Scholar 

  • Ossadnik P (1992) Branch order and ramification analysis of large diffusion-limited-aggregation clusters. Phys Rev A 45(2):1058–1066

    Article  Google Scholar 

  • Pelletier JD (2004) Persistent drainage migration in a numerical landscape evolution model. Geophys Res Lett 31(20)

    Google Scholar 

  • Pelletier JD (2007) Fractal behavior in space and time in a simplified model of fluvial landform evolution. Geomorphology 91(3–4):291–301

    Google Scholar 

  • Perron JT, Dietrich WE, Kirchner JW (2008) Controls on the spacing of first-order valleys. J Geophys Res Earth 113(F4)

    Google Scholar 

  • Phillips JD (2016) Vanishing point: scale independence in geomorphological hierarchies. Geomorphology 266:66–74

    Article  Google Scholar 

  • Rezvanbehbahani S, van der Veen CJ, Stearns LA (2019) Fractal properties of Greenland isolines. Math Geosci 51(8):1075–1090

    Article  Google Scholar 

  • Richardson LF (1961) The problem of contiguity: an appendix of statistics of deadly quarrels. General Syst Yearbook 6:139–187

    Google Scholar 

  • Rodriguez-Iturbe I, Rinaldo A, Rigon R, Bras RL, Ijjasz-Vasquez E, Marani A (1992) Fractal structures as least energy patterns: the case of river networks. Geophys Res Lett 19(9):889–892

    Article  Google Scholar 

  • Sahoo R, Singh RN, Jain V (2020) Process inference from topographic fractal characteristics in the tectonically active Northwest Himalaya, India. Earth Surf Process Landforms 45(14):3572–3591

    Article  Google Scholar 

  • Seuront L (2009) Fractals and multifractals in ecology and aquatic science. CRC Press

    Book  Google Scholar 

  • Sornette A, Davy P, Sornette D (1990) Growth of fractal fault patterns. Phys Rev Lett 65(18):2266–2269

    Article  Google Scholar 

  • Strahler AN (1957) Quantitative analysis of watershed geomorphology. EOS Trans Am Geophys Union 38(6):913–920

    Article  Google Scholar 

  • Tarboton DG, Bras RL, Rodriguez-Iturbe I (1988) The fractal nature of river networks. Water Resour Res 24(8):1317–1322

    Article  Google Scholar 

  • Tucker GE, Hancock GR (2010) Modelling landscape evolution. Earth Surf Process Landf 35(1):28–50

    Article  Google Scholar 

  • Turcotte DL (1989) A fractal approach to probabilistic seismic hazard assessment. Tectonophysics 167(2–4):171–177

    Article  Google Scholar 

  • Vening Meinesz FA (1951) A remarkable feature of the Earth’s topography, origin of continents and oceans. Proc Koninkl Ned Akad Wetensch ser B 55:212–228

    Google Scholar 

  • Whipple KX, Tucker GE (1999) Dynamics of the stream-power river incision model: implications for height limits of mountain ranges, landscape response timescales, and research needs. J Geophys Res Solid Earth 104(B8):17661–17674

    Article  Google Scholar 

  • Xu Z, Tang Y, Connor T, Li D, Li Y, Liu J (2017) Climate variability and trends at a national scale. Sci Rep 7(1):1–10

    Google Scholar 

  • Zgheib N, Fedele JJ, Hoyal DCJD, Perillo MM, Balachandar S (2018) Direct numerical simulation of transverse ripples: 1. Pattern initiation and bedform interactions. J Geophys Res Earth 123(3):448–477

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramendra Sahoo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Sahoo, R. (2023). Fractal Landscape. In: Daya Sagar, B.S., Cheng, Q., McKinley, J., Agterberg, F. (eds) Encyclopedia of Mathematical Geosciences. Encyclopedia of Earth Sciences Series. Springer, Cham. https://doi.org/10.1007/978-3-030-85040-1_121

Download citation

Publish with us

Policies and ethics