Definitions
- EA:
-
Electronic Arts
- NFT:
-
Non-Fungible Tokens
- CEO:
-
Chief Executive Officer
- MMO Game:
-
Massively Multiplayer Online Game
Introduction
Games design is the field of study and practice of improving and measuring the structure and systems found within an analogue or digital game. The process of improving a game throughout the development and lifecycle of a game is key to the survival of the game. Notable examples include changes found within the rules of chess throughout its long lifespan and different iterations and versions of the game (Murray 2015). Game designers incrementally change the game to provide better entertainment to its participating players. Game designer and developer Robert Zubek defines game design by breaking it down into its elements, which he says are the following (Zubek 2020):
Gameplay, which is the interaction between the player and the mechanics and systems
Mechanics and systems, which are the rules...
References
Adams, E., Dormans, J.: Game Mechanics: Advanced Game Design, 1st edn. New Riders Publishing, Berkeley (2012)
Aponte, M.V., Levieux, G., Natkin, S.: Measuring the level of difficulty in single player video games. Entertain. Comput. 2, 205 (2009). https://doi.org/10.1016/j.entcom.2011.04.001
Ariyurek, S., Betin-Can, A., Surer, E.: Enhancing the Monte Carlo tree search algorithm for video game testing. In: 2020 IEEE Conference on Games (CoG), pp. 25–32 (2020). https://doi.org/10.1109/CoG47356.2020.9231670
Ariyurek, S., Sürer, E., Betin-Can, A.: Playtesting: what is beyond personas. CoRR abs/2107.11965. https://arxiv.org/abs/2107.11965 (2021)
Baron, J.R.: Procedural dungeon generation analysis and adaptation. In: Proceedings of the SouthEast Conference, Association for Computing Machinery, New York, NY, USA, ACM SE ‘17, pp. 168–171 (2017). https://doi.org/10.1145/3077286.3077566
Bedder, M.: AI tools for automated game testing. https://web.archive.org/web/20200805074140/ https://www.prowler.io/blog/ai-tools-for-automated-game-testing (2019)
Bergdahl, J., Gordillo, C., Tollmar, K., Gisslén, L.: Augmenting automated game testing with deep reinforcement learning. CoRR abs/2103.15819. https://arxiv.org/abs/2103.15819 (2021)
Carpenter, A.: Applying risk analysis to play-balance RPGs Credits E (2012) Perfect imbalance – why unbalanced design creates balanced play. https://www.youtube.com/watch?v=e31OSVZF77w, in comment section (2003). Accessed 26 Oct 2021
Fullerton, T.: Game Design Workshop. A Playcentric Approach to Creating Innovative Games, pp. 248–276 (2008). https://doi.org/10.1201/b22309
Goodfellow, I.J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. In: Proceedings of the 27th International Conference on Neural Information Processing Systems – volume 2, MIT Press, Cambridge, MA, USA, NIPS’14, pp. 2672–2680 (2014)
Gordillo, C., Bergdahl, J., Tollmar, K., Gisslén, L.: Improving playtesting coverage via curiosity driven reinforcement learning agents. CoRR abs/2103.13798. https://arxiv.org/abs/2103.13798 (2021)
Grau-Moya, J., Leibfried, F., Bou-Ammar, H.: Balancing two-player stochastic games with soft Q-learning. CoRR abs/1802.03216 (2018)
Gudmundsson, S.F., Eisen, P., Poromaa, E., Nodet, A., Purmonen, S., Kozakowski, B., Meurling, R., Cao, L.: Human-like playtesting with deep learning. In: 2018 IEEE Conference on Computational Intelligence and Games (CIG), pp. 1–8 (2018). https://doi.org/10.1109/CIG.2018.8490442
Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)
Holmg, C., Green, M.C., Liapis, A., Togelius, J.: Automated playtesting with procedural personas through MCTS with evolved heuristics. CoRR abs/1802.06881 (2018)
Holmgård, C., Liapis, A., Togelius, J., Yannakakis, G.N.: Evolving personas for player decision modeling. In: 2014 IEEE Conference on Computational Intelligence and Games, pp. 1–8 (2014)
Holmgård, C., Liapis, A., Togelius, J., Yannakakis, G.: Evolving models of player decision making: personas versus clones. Entertain Comput. 16 (2015). https://doi.org/10.1016/j.entcom.2015.09.002
Hun Kim, J., Wu, R.: Leveraging machine learning for game development. https://ai.googleblog.com/2021/03/leveraging-machine-learning-for-game.html (2021)
Karavolos, D., Liapis, A., Yannakakis, G.N.: Using a surrogate model of gameplay for automated level design. In: 2018 IEEE Conference on Computational Intelligence and Games (CIG), pp. 1–8 (2018)
Khalifa, A., Bontrager, P., Earle, S., Togelius, J.: PCGRL: procedural content generation via reinforcement learning. CoRR abs/2001.09212. https://arxiv.org/abs/2001.09212 (2020)
Lee, I., Kim, H., Lee, B.: Automated Playtesting with a Cognitive Model of Sensorimotor Coordination, pp. 4920–4929. Association for Computing Machinery, New York (2021). https://doi.org/10.1145/3474085.3475429
Liapis, A., Karavolos, D., Makantasis, K., Sfikas, K., Yannakakis, G.: Fusing level and ruleset features for multimodal learning of gameplay outcomes, pp. 1–8 (2019). https://doi.org/10.1109/CIG.2019.8848015
Liu, J., Snodgrass, S., Khalifa, A., Risi, S., Yannakakis, G.N., Togelius, J.: Deep learning for procedural content generation. Neural Comput. Appl. 33, 19 (2020). https://doi.org/10.1007/s00521-020-05383-8
Lucas, S.M., Volz, V.: Tile pattern KL-divergence for analysing and evolving game levels. CoRR abs/1905.05077. http://arxiv.org/abs/1905.05077 (2019)
Murray, H.: A History of Chess: The Original 1913 Edition. Skyhorse. https://books.google.ie/books?id=3GzujwEACAAJ (2015)
Paduraru, C., Paduraru, M., Stefanescu, A.: Automated game testing using computer vision methods. In: 2021 36th IEEE/ACM International Conference on Automated Software Engineering Workshops (ASEW), pp. 65–72 (2021). https://doi.org/10.1109/ASEW52652.2021.00024
Pfau, J., Smeddinck, J.D., Malaka, R.: Automated game testing with ICARUS: intelligent completion of adventure riddles via unsupervised solving. In: Extended Abstracts Publication of the Annual Symposium on Computer-Human Interaction in Play, Association for Computing Machinery, New York, NY, USA, CHI PLAY ‘17 Extended Abstracts, pp. 153–164 (2017). https://doi.org/10.1145/3130859.3131439
Pfau, J., Liapis, A., Volkmar, G., Yannakakis, G.N., Malaka, R.: Dungeons & replicants: automated game balancing via deep player behavior modeling. In: 2020 IEEE Conference on Games (CoG), pp. 431–438 (2020). https://doi.org/10.1109/CoG47356.2020.9231958
Politowski, C., Petrillo, F., Guéhéneuc, Y.: A survey of video game testing. CoRR abs/2103.06431. https://arxiv.org/abs/2103.06431 (2021)
Politowski, C., Guéhéneuc, Y.G., Petrillo, F.: Towards automated video game testing: still a long way to go. arXiv e-prints arXiv:2202.12777 (2022)
Roohi, S., Relas, A., Takatalo, J., Heiskanen, H., Hämäläinen, P.: Predicting game difficulty and churn without players. CoRR abs/2008.12937. https://arxiv.org/abs/2008.12937 (2020)
Roy, J., Girgis, R., Romoff, J., Bacon, P.L., Pal, C.J.: Direct behavior specification via constrained reinforcement learning. In: Chaudhuri, K., Jegelka, S., Song, L., Szepesvari, C., Niu, G., Sabato, S. (eds.) Proceedings of the 39th International Conference on Machine Learning, PMLR, Proceedings of Machine Learning Research, vol. 162, pp. 18828–18843 (2022) https://proceedings.mlr.press/v162/roy22a.html
Sekhavat, Y.: Behavior trees for computer games. Int. J. Artif. Intell. Tools. 26 (2017). https://doi.org/10.1142/S0218213017300010
Sestini, A., Gisslén, L., Bergdahl, J., Tollmar, K., Bagdanov, A.D.: CCPT: automatic gameplay testing and validation with curiosity-conditioned proximal trajectories. https://doi.org/10.48550/ARXIV.2202.10057. https://arxiv.org/abs/2202.10057 (2022)
Stahlke, S.N., Mirza-Babaei, P.: Usertesting without the user: opportunities and challenges of an AI-driven approach in games user research. Comput. Entertain. 16(2), 1 (2018). https://doi.org/10.1145/3183568
TestDel: Why is it so difficult to test games? https://testdel.medium.com/why-is-it-so-difficult-to-test-games-955d643ba55e (2019)
Volz, V., Schrum, J., Liu, J., Lucas, S.M., Smith, A.M., Risi, S.: Evolving Mario levels in the latent space of a deep convolutional generative adversarial network. CoRR abs/1805.00728. http://arxiv.org/abs/1805.00728 (2018)
Waern, A., Back, J.: Experimental Game Design, pp. 341–353. ETC Press, Pittsburgh (2015)
Zhang, H., Wang, J., Zhou, Z., Zhang, W., Wen, Y., Yu, Y., Li, W.: Learning to design games: strategic environments in deep reinforcement learning. CoRR abs/1707.01310. http://arxiv.org/abs/1707.01310 (2017)
Zhao Y, Borovikov I, Beirami A, Rupert J, Somers C, Harder J, De Mesentier Silva F, Kolen J, Pinto J, Pourabolghasem R, Chaput H, Pestrak J, Sardari M, Lin L, Aghdaie N, Zaman K.: Winning isn’t everything: Enhancing game development with intelligent agents. (2019)
Zheng, Y., Xie, X., Su, T., Ma, L., Hao, J., Meng, Z., Liu, Y., Shen, R., Chen, Y., Fan, C.: Wuji: automatic online combat game testing using evolutionary deep reinforcement learning. In: 2019 34th IEEE/ACM International Conference on Automated Software Engineering (ASE), pp. 772–784 (2019). https://doi.org/10.1109/ASE.2019.00077
Zook, A., Fruchter, E., Riedl, M.O.: Automatic playtesting for game parameter tuning via active learning. 1908.01417 (2019)
Zubek, R.: Elements of Game Design. MIT Press (2020) https://books.google.ie/books?id=0s_tDwAAQBAJ
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 Springer Nature Switzerland AG
About this entry
Cite this entry
Stephens, C., Exton, C. (2023). Automated Game Design Testing Using Machine Learning. In: Lee, N. (eds) Encyclopedia of Computer Graphics and Games. Springer, Cham. https://doi.org/10.1007/978-3-319-08234-9_385-1
Download citation
DOI: https://doi.org/10.1007/978-3-319-08234-9_385-1
Received:
Accepted:
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-08234-9
Online ISBN: 978-3-319-08234-9
eBook Packages: Springer Reference Computer SciencesReference Module Computer Science and Engineering